Using Molecular Dynamics and Quantum Mechanics Calculations To Model Fluorescence Observables

Document Type

Article

Publication Date

4-28-2011

Publication Source

Journal of Physical Chemistry A

Volume Number

115

Issue Number

16

First Page

3997

Last Page

4008

Publisher

American Chemical Society

ISSN

1089-5639

Abstract

We provide a critical examination of two different methods for generating a donor acceptor electronic coupling trajectory from a molecular dynamics (MD) trajectory and three methods for sampling that coupling trajectory, allowing the modeling of experimental observables directly from the MD simulation. In the first coupling method we perform a single quantum-mechanical (QM) calculation tip characterize the excited state behavior, specifically the transition dipole moment, of the fluorescent probe, which is then mapped onto the configuration space sampled by MD. We then utilize these transition dipoles within the ideal dipole approximation (IDA) to determine the electronic coupling between the probes that mediates the transfer of energy. In the second method we perform a QM calculation on each snapshot and use the complete transition densities to calculate the electronic coupling without need for the IDA. The resulting coupling trajectories are then sampled using three methods ranging from an independent sampling of each trajectory point (the independent snapshot method) to a Markov chain treatment that accounts for the dynamics of the coupling in determining effective rates. The results show that the IDA significantly overestimates the energy transfer rate (by a factor of 24) during the portions of the trajectory in which the probes are close to each other. Comparison of the sampling methods shows that the Markov chain approach yields more realistic observables at both high and low FRET efficiencies. Differences between the three sampling methods are discussed in terms of the different mechanisms for averaging over structural dynamics in the system. Conergence of the Markov chain method is carefully examined. Together, the methods for estimating coupling and for sampling the coupling provide a mechanism for directly connecting the structural dynamics modeled by MD with fluorescence observables determined through FRET experiments.

Share

COinS