Symmetrizer: Algorithmic determination of point groups in nearly symmetric molecules
Document Type
Article
Publication Date
7-15-2012
Publication Source
Journal of Computational Chemistry
Volume Number
33
Issue Number
19
First Page
1637
Last Page
1642
Publisher
Wiley
ISSN
0192-8651
Abstract
Symmetry is an extremely useful and powerful tool in computationalChemistry, both for predicting the properties of molecules and for simplifying calculations. Although methods for determining the point groups of perfectly symmetric molecules are well-known, finding the closest point group for a nearly symmetric molecule is far less studied, although it presents many useful applications. For this reason, we introduce Symmetrizer, an algorithm designed to determine a molecule's symmetry elements and closest matching point groups based on a user-adjustable tolerance, and then to symmetrize that molecule to a given point group geometry. In contrast to conventional methods, Symmetrizer takes a bottom-up approach to symmetry detection by locating all possible symmetry elements and uses this set to deduce the most probable point groups. We explain this approach in detail, and assess the flexibility, robustness, and efficiency of the algorithm with respect to various input parameters on several test molecules. We also demonstrate an application of Symmetrizer by interfacing it with the WebMO web-based interface to computationalChemistry packages as a showcase of its ease of integration. (c) 2012 Wiley Periodicals, Inc.
Keywords
symmetry; symmetry element; point group; group theory; algorithm
Recommended Citation
Largent, R. Jeffrey, William F. Polik and J. R. Schmidt. "Symmetrizer: Algorithmic Determination of Point Groups in Nearly Symmetric Molecules." Journal of Computational Chemistry 33, no. 19.00 (2012): 1637-1642.