Seasonal Changes in Androgen Receptor mRNA in the Brain of the White-crowned Sparrow

Gregory S. Fraley, Hope College
Robert A. Steiner, University of Washington
Karin L. Lent, Universit of Washington
Eliot A. Brenowitz, Universit of Washington

Abstract

In songbirds, neurons that regulate learned song behavior undergo extensive seasonal plasticity in their number and size in relation to the bird's reproductive status. Seasonal plasticity of these brain regions is primarily regulated by changes in circulating concentrations of testosterone. Androgen receptors are present in all of the major song nuclei, but it is unknown whether levels of androgen receptor mRNA in the telencephalic song regions HVC, the robust nucleus of the arcopallium, and the lateral magnocellular nucleus of the anterior nidopallium change as a function of season in white-crowned sparrows. To determine whether seasonal changes in levels of androgen receptor mRNA are specific to the song control system, we also measured levels of androgen receptor mRNA in a limbic nucleus, the lateral division of the bed nucleus of the stria terminalis (the lateral division of the bed nucleus of the stria terminalis). We found that levels of androgen receptor mRNA were higher in HVC and the lateral division of the bed nucleus of the stria terminalis of birds in the breeding condition compared with the nonbreeding condition; however, we observed no seasonal differences in levels of androgen receptor mRNA in either the robust nucleus of the arcopallium or the lateral magnocellular nucleus of the anterior nidopallium. These results are consistent with previous observations that seasonal plasticity of the song nuclei results from testosterone acting directly on HVC, which then exerts transsynaptic trophic effects on its efferent targets. The seasonal change in the expression of androgen receptor in HVC may be one component of the cellular mechanisms underlying androgenic effects on seasonal plasticity of the song control nuclei.