Document Type
Article
Publication Date
7-1-2019
Publication Source
Smart Materials and Structures
Volume Number
28
Issue Number
7
First Page
075009
Publisher
IOP Publishing
ISSN
0964-1726
Abstract
Laterally constrained arches driven between stable states by light, represent a unique space for compliant mechanism design. Exploiting mechanical multistability can overcome limitations of functional photomechanical actuators, which include limited repeatability, actuation speed, and positioning characteristics. Here, the addition of lateral constraints to an elastic bistable arch system is proposed as a method for toggling between bifurcated states by controlling the location of actinic irradiation. This approach expands the design space for photomechanical, mutistable structures and actuators. Arch behavior as a function of system parameters is simulated, including conditions leading to multistability. An experimental demonstration and exploration of a constrained photomechanical arch is also presented. It is expected that the concepts presented here could lead to innovations in areas such as energy harvesting, soft robotics, and multistable architected materials.
Keywords
compliant mechanism, multistability, elastic instability, azobenzene, actuator, light responsive
Recommended Citation
Repository citation: Smith, Matthew L.; Gao, J; Skandani, A A.; Deering, N; Wang, D H.; Sicard, A A.; Plaver, M; Tan, L-S; White, T J.; and Shankar, M R., "Tuned Photomechanical Switching of Laterally Constrained Arches" (2019). Faculty Publications. Paper 1483.
https://digitalcommons.hope.edu/faculty_publications/1483
Published in: Smart Materials and Structures, Volume 28, Issue 7, July 1, 2019, pages 075009-. Copyright © 2019 IOP Publishing.
Comments
CC BY-NC-ND 4.0 License
M L Smith et al 2019 Smart Mater. Struct. 28 075009
This is a peer-reviewed, un-copyedited version of an article accepted for publication/published in Smart Materials and Structures. IOP Publishing Ltd is not responsible for any errors or omissions in this version of the manuscript or any version derived from it. The Version of Record is available online at https://doi.org/10.1088/1361-665X/ab1ce4.