Fretting about FRET: Failure of the Ideal Dipole Approximation
Document Type
Article
Publication Date
6-17-2009
Publication Source
Biophysical Journal
Volume Number
96
Issue Number
12
First Page
4779
Last Page
4788
Publisher
Cell Press
Abstract
With recent growth in the use of fluorescence-detected resonance energy transfer (FRET), it is being applied to complex systems in modern and diverse ways where it is not always clear that the common approximations required for analysis are applicable. For instance, the ideal dipole approximation (IDA), which is implicit in the Förster equation, is known to break down when molecules get “too close” to each other. Yet, no clear definition exists of what is meant by “too close”. Here we examine several common fluorescent probe molecules to determine boundaries for use of the IDA. We compare the Coulombic coupling determined essentially exactly with a linear response approach with the IDA coupling to find the distance regimes over which the IDA begins to fail. We find that the IDA performs well down to roughly 20 Å separation, provided the molecules sample an isotropic set of relative orientations. However, if molecular motions are restricted, the IDA performs poorly at separations beyond 50 Å. Thus, isotropic probe motions help mask poor performance of the IDA through cancellation of error. Therefore, if fluorescent probe motions are restricted, FRET practitioners should be concerned with not only the well-known κ2approximation, but also possible failure of the IDA.
Recommended Citation
Repository citation: Munoz-Losa, Aurora; Curutchet, Carles; Krueger, Brent P.; Hartsell, Lydia R.; and Mennucci, Benedetta, "Fretting about FRET: Failure of the Ideal Dipole Approximation" (2009). Faculty Publications. Paper 1264.
https://digitalcommons.hope.edu/faculty_publications/1264
Published in: Biophysical Journal, Volume 96, Issue 12, June 17, 2009, pages 4779-4788. Copyright © 2009 Cell Press, Cambridge.