Design Of Polarization-dependent, Flexural-torsional Deformation In Photo Responsive Liquid Crystalline Polymer Networks
Document Type
Article
Publication Date
2014
Publication Source
Soft Matter
Volume Number
10
Issue Number
9
First Page
1400
Last Page
1410
Publisher
Royal Society of Chemistry
ISSN
1744-683X
Abstract
Light responsive materials that exhibit wirelessly actuated, multidimensional deformation are excellent candidates for programmable matter applications such as morphing structures or soft robotics. A central challenge to designing adaptive structures from these materials is the ability accurately predict three dimensional deformations. Previous modeling efforts have focused almost exclusively on pure bending. Herein we examine key material parameters affecting light driven flexural-torsional response in azobenzene functionalized liquid crystal polymer networks. We show that a great deal of control can be obtained by specifying material alignment and actuating the material with polarized light. Insight gained from the theoretical framework here lays the foundation for more extensive modeling efforts to combine polarization controlled flexural-torsional deformations with complex geometry, boundary conditions, and loading conditions.
Keywords
Photomechanical Response, Actuators, Light, DNA
Recommended Citation
Smith, Matthew L., Kyung Min Lee, Timothy J. White, and Richard A. Vaia. 2014. “Design of Polarization-Dependent, Flexural–torsional Deformation in Photo Responsive Liquid Crystalline Polymer Networks.” Soft Matter 10 (9): 1400–1410. doi:10.1039/C3SM51865E.