Document Type
Article
Publication Date
7-16-2013
Publication Source
Molecular Physics
Volume Number
112
Issue Number
2
First Page
261
Last Page
300
Publisher
Taylor & Francis
ISSN
0026-8976
Abstract
Vibrational levels of polyatomic molecules are analysed with Van Vleck perturbation theory to connect experimental energy levels to computed molecular potential energy surfaces. Vibrational matrix elements are calculated from a quartic potential function via second-order Van Vleck perturbation theory, a procedure that treats both weak and strong interactions among vibrational states by approximately block-diagonalising the vibrational Hamiltonian. A clear and complete derivation of anharmonic and resonance constants as well as general expressions for both on- and off-diagonal matrix elements of the transformed Hamiltonian is presented. The equations are written in partial fraction form and as a constant multiplied by a harmonic oscillator matrix element to facilitate removing the effect of strongly interacting resonant states both in analytical formulae and in computer code. The derived equations are validated numerically, and results for the isotopomers of formaldehyde (H2CO, HDCO, D2CO) are included. The implications of the equations on zero-point energy calculations and experimental fits are discussed. The VPT2+K method is defined by these results for use in fitting and calculating vibrational energy levels.
Keywords
Molecular Vibrations, Van Vleck Perturbation Theory, Vibrational Energy Levels, Spectroscopic Constants, Resonances, Potential-energy Surfaces
Recommended Citation
Repository citation: Rosnik, Andreana M. and Polik, William F., "VPT2+K Spectroscopic Constants and Matrix Elements of the Transformed Vibrational Hamiltonian of a Polyatomic Molecule with Resonances Using Van Vleck Perturbation Theory" (2013). Faculty Publications. Paper 1066.
https://digitalcommons.hope.edu/faculty_publications/1066
Published in: Molecular Physics, Volume 112, Issue 2, July 16, 2013, pages 261-300. Copyright © 2013 Taylor & Francis, Milton Park, Abingdon.
Supplemental and Extra Material
source_141219.txt (153 kB)
Source Code
inout_141219.txt (49 kB)
In / Out
Comments
This is an Accepted Manuscript of an article published by Taylor & Francis in Molecular Physics on 16 Jul 2013, available online: http://www.tandfonline.com/10.1080/00268976.2013.808386