Contactless, Photoinitiated Snap-through In Azobenzene-functionalized Polymers
Document Type
Article
Publication Date
11-19-2013
Publication Source
Proceedings Of The National Academy Of Sciences Of The United States Of America
Volume Number
110
Issue Number
47
First Page
18792
Last Page
18797
Publisher
National Academy of Sciences
ISSN
0027-8424
Abstract
Photomechanical effects in polymeric materials and composites transduce light into mechanical work. The ability to control the intensity, polarization, placement, and duration of light irradiation is a distinctive and potentially useful tool to tailor the location, magnitude, and directionality of photogenerated mechanical work. Unfortunately, the work generated from photoresponsive materials is often slow and yields very small power densities, which diminish their potential use in applications. Here, we investigate photoinitiated snap-through in bistable arches formed from samples composed of azobenzene-functionalized polymers (both amorphous polyimides and liquid crystal polymer networks) and report ordersof- magnitude enhancement in actuation rates (approaching 10(2)mm/ s) and powers (as much as 1 kW/m3). The contactless, ultra-fast actuation is observed at irradiation intensities << 100 mW/cm(2). Due to the bistability and symmetry of the snap-through, reversible and bidirectional actuation is demonstrated. A model is developed to elucidate the underlying mechanics of the snap-through, specifically focusing on isolating the role of sample geometry, mechanical properties of the materials, and photomechanical strain. Using light to trigger contactless, ultrafast actuation in an otherwise passive structure is a potentially versatile tool to use in mechanical design at the micro-, meso-, and millimeter scales as actuators, as well as switches that can be triggered from large standoff distances, impulse generators for microvehicles, microfluidic valves and mixers in laboratory-on-chip devices, and adaptive optical elements.
Keywords
Author Keywords: photochemistry; elastic instability KeyWords Plus: NETWORKS; ISOMERIZATION; ELASTOMERS; DEVICES
Recommended Citation
Shankar, M. Ravi, Matthew L. Smith, Vincent P. Tondiglia, Kyung Min Lee, Michael E. McConney, David H. Wang, Loon-Seng Tan and Timothy J. White. "Contactless, Photoinitiated Snap-through in Azobenzene-Functionalized Polymers." Proceedings Of The National Academy Of Sciences Of The United States Of America 110, no. 47 (2013): 18792-18797.