Document Type


Publication Date


Publication Source


Volume Number


Issue Number






Article Number



CC BY 4.0 (

Gall AJ, Todd WD, Blumberg MS (2012) Development of SCN Connectivity and the Circadian Control of Arousal: A Diminishing Role for Humoral Factors?. PLOS ONE 7(9): e45338.


The suprachiasmatic nucleus (SCN) is part of a wake-promoting circuit comprising the dorsomedial hypothalamus (DMH) and locus coeruleus (LC). Although widely considered a "master clock," the SCN of adult rats is also sensitive to feedback regarding an animal's behavioral state. Interestingly, in rats at postnatal day (P)2, repeated arousing stimulation does not increase neural activation in the SCN, despite doing so in the LC and DMH. Here we show that, by P8, the SCN is activated by arousing stimulation and that selective destruction of LC terminals with DSP-4 blocks this activational effect. We next show that bidirectional projections among the SCN, DMH, and LC are nearly absent at P2 but present at P8. Despite the relative lack of SCN connectivity with downstream structures at P2, day-night differences in sleep-wake activity are observed, suggesting that the SCN modulates behavior at this age via humoral factors. To test this hypothesis, we lesioned the SCN at P1 and recorded sleep-wake behavior at P2: Day-night differences in sleep and wake were eliminated. We next performed precollicular transections at P2 and P8 that isolate the SCN and DMH from the brainstem and found that day-night differences in sleep-wake behavior were retained at P2 but eliminated at P8. Finally, the SCN or DMH was lesioned at P8: When recorded at P21, rats with either lesion exhibited similarly fragmented wake bouts and no evidence of circadian modulation of wakefulness. These results suggest an age-related decline in the SCN's humoral influence on sleep-wake behavior that coincides with the emergence of bidirectional connectivity among the SCN, DMH, and LC.