4-11-2014

Modified Wavelet Methods for Identifying Transitions in Bean Beetle Maturation

David McMorris

Follow this and additional works at: http://digitalcommons.hope.edu/curcp_13

Recommended Citation

http://digitalcommons.hope.edu/curcp_13/126
Modified Wavelet Methods for Identifying Transitions in Bean Beetle Maturation

David McMorris, Brian Yurk*, Paul Pearson*

Department of Mathematics, Hope College

Abstract

As bean beetle embryos develop, time lapse photographs of their eggs exhibit varying levels of brightness that correspond to different stages of maturation. This signal can be analyzed to pinpoint the timing of these various stages. We have developed an averaging method based on a modified Haar wavelet technique to identify these changes visually. This method has been studied for both accuracy and precision through a process of randomized simulations at different levels of signal noise. The results of this study have supported the efficacy of this method, demonstrating its usefulness in analyzing a wide variety of signals.

Introduction

Bean beetles (Callosobruchus maculatus) are agricultural pests native to Africa/Asia. These insects are poikilothermic, and lay their eggs on bean surfaces. Following embryonic development, they burrow into the bean and consume the capsule darkening and lay their eggs on bean surfaces. Following embryonic development, they burrow into the bean and consume the capsule darkening and lay their eggs on bean surfaces. Following embryonic development, they burrow into the bean and consume the capsule darkening and lay their eggs on bean surfaces. Following embryonic development, they burrow into the bean and consume the capsule darkening and lay their eggs on bean surfaces.

We modified the standard Haar wavelet algorithm to increase the resolution in identifying the beginnings of important changes in the signals, such as the darkening of the bean beetle head capsule.

The Seaweed Method

Figure 4 (Left): Example of a discrete signal. Figure 5 (Right): Identification and marking of points which cause the differences of averages to change sign at window levels 2 and 6.

Figure 6 (Right): Final result of seaweed algorithm.

Testing The Seaweed Method

We tested the seaweed method at various noise levels by injecting noise into a base signal, and using seaweed to pick randomly positioned transition points. The noise came from normal distributions with mean zero and varying standard deviations.

The signals appeared in random order, and in each case we were kept blind to the true transition point as well as the level of noise. In this regard we were able to minimize any sort of learning in the analyst which may skew the results.

Results

Figure 8 (Above Left): Histograms of transition point identification error from two experiments, sd = 0.1, 0.5.

Figure 9 (Above center): Example signals depicting experimental noise levels.

Figure 10 (Above Right): Scatterplot showing transition point identification error from all experiments.

Conclusions

Based on these results we can conclude that this method is both precise and accurate. This is supported by the low standard deviations of the error distributions, and the centering of each distribution at zero. Furthermore, there is a low standard deviation of error for noise levels of our bean beetle experimental data (sd = [0.0,0.5]), and even at high levels of noise our method is still accurate. Finally, this suggests that our method is indeed capable of analyzing a much wider range of signals.

Acknowledgments

Dr. Charles Cusack for seaweed Java implementation
Dr. Aaron Putzke
Collaborators Ariel Vincent and Bennett Riddinger
Hope College Division of Natural and Applied Sciences
Hope College Departments of Mathematics and Biology
NSF-REU
Howard Hughes Medical Institute
Jacob E. Nynhuis Faculty Development Grant

References