Two-pebbling and Odd-two-pebbling are Not Equivalent

Charles A. Cusack
Hope College, cusack@hope.edu

Airat Bekmetjev
Hope College, bekmetjev@hope.edu

Mark Powers
Hope College

Follow this and additional works at: https://digitalcommons.hope.edu/faculty_publications

Part of the Discrete Mathematics and Combinatorics Commons

Recommended Citation
Repository citation: Cusack, Charles A.; Bekmetjev, Airat; and Powers, Mark, "Two-pebbling and Odd-two-pebbling are Not Equivalent" (2019). Faculty Publications. Paper 1485.
https://digitalcommons.hope.edu/faculty_publications/1485

This Article is brought to you for free and open access by Hope College Digital Commons. It has been accepted for inclusion in Faculty Publications by an authorized administrator of Hope College Digital Commons. For more information, please contact digitalcommons@hope.edu.
Two-pebbling and odd-two-pebbling are not equivalent

Charles A. Cusacka,b,* Airat Bekmetjevb, Mark Powersa

aDepartment of Computer Science, Hope College, 27 Graves Place, Holland, MI 49422
bDepartment of Mathematics, Hope College, 27 Graves Place, Holland, MI 49422

Abstract

Let G be a connected graph. A configuration of pebbles assigns a nonnegative integer number of pebbles to each vertex of G. A move consists of removing two pebbles from one vertex and placing one pebble on an adjacent vertex. A configuration is solvable if any vertex can get at least one pebble through a sequence of moves. The pebbling number of G, denoted $\pi(G)$, is the smallest integer such that any configuration of $\pi(G)$ pebbles on G is solvable. A graph has the two-pebbling property if after placing more than $2\pi(G) - q$ pebbles on G, where q is the number of vertices with pebbles, there is a sequence of moves so that at least two pebbles can be placed on any vertex. A graph has the odd-two-pebbling property if after placing more than $2\pi(G) - r$ pebbles on G, where r is the number of vertices with an odd number of pebbles, there is a sequence of moves so that at least two pebbles can be placed on any vertex. In this paper, we prove that the two-pebbling and odd-two-pebbling properties are not equivalent.

Keywords: graph pebbling, Lemke graph, two-pebbling, odd-two-pebbling

1. Introduction

Let G be a connected graph. A configuration assigns a nonnegative number of pebbles to the vertices of G. For a configuration C, we define $C(v)$ to be the number of pebbles on vertex v, and if U is a subset of vertices of G, then $C(U)$ is the total number of pebbles on the vertices in U. A pebbling move (or just move) removes two pebbles from one vertex and places one pebble on an adjacent vertex. A vertex v is reachable under some configuration if it is possible to move a pebble to v through a sequence of pebbling moves. A configuration is solvable if all vertices are reachable. The pebbling number rooted at a vertex v in G, $\pi(G, v)$, is defined as the smallest number of pebbles so that for any configuration of $\pi(G, v)$ pebbles, v is reachable. The pebbling number of a graph is $\pi(G) = \max_{v \in V(G)} (\pi(G, v))$.

*Corresponding author

Email addresses: cusack@hope.edu (Charles A. Cusack), bekmetjev@hope.edu (Airat Bekmetjev)

Preprint submitted to Discrete Mathematics November 5, 2018
A graph G has the two-\textit{pebbling property} if for every configuration of more than $2\pi(G) - q$ pebbles, where q is the number of vertices with pebbles, it is possible to move 2 pebbles to any vertex. A \textit{violating configuration} for a vertex v of G is any configuration of more than $2\pi(G) - q$ pebbles such that two pebbles cannot be moved to v. A graph that does not have the two-\textit{pebbling property} is called a \textit{Lemke graph}.

The two-\textit{pebbling property} was introduced by Chung [1]. Most graphs have the two-\textit{pebbling property} [2]. In fact, only a handful of families of Lemke graphs have been found [3, 4, 5, 6, 7]. Graham’s Conjecture states for any two graphs G and H, $\pi(G\square H) \leq \pi(G)\pi(H)$, where $G\square H$ is the Cartesian product of G and H [1]. Graham’s conjecture has been studied by numerous researchers, and many results that affirm the conjecture rely on the two-\textit{pebbling property} [1, 3, 5, 8, 9, 10].

A graph G has the odd-two-\textit{pebbling property} if for every configuration of more than $2\pi(G) - r$ pebbles, where r is the number of vertices with an odd number of pebbles, it is possible to move 2 pebbles to any vertex [5]. Note that any graph which has the two-\textit{pebbling property} also has the odd-two-\textit{pebbling property}. All Lemke graphs found to date also do not have the odd-two-\textit{pebbling property}. This is true even of more recent Lemke graphs [6, 7]. Wang conjectured that two-\textit{pebbling} and odd-two-\textit{pebbling} are equivalent [5]. We present a graph that has the odd-two-\textit{pebbling property} but does not have the two-\textit{pebbling property}, proving that the properties are not equivalent.

2. General Results

The following is a somewhat obvious but powerful tool in analyzing Lemke graphs.

Theorem 1. Let C be a violating configuration on graph G for root r with $2\pi(G) - q + k$ pebbles, where $k \geq 1$. Then it is impossible to place a pebble on r using less than $\pi(G) - q + k + 1$ pebbles.

Proof. If $\pi(G) - q + k$ pebbles are used to place one pebble on r, $\pi(G)$ pebbles are left on G so a second pebble can be moved to r.

In our arguments related to the two-\textit{pebbling} property, we will often state that the root can be reached using $\pi(G) - q + 1$ pebbles and leave implicit the fact that a second pebble can be moved to the root by Theorem 1, implying that the given configuration is not a violating configuration for the given root.

Lemma 2. Let G be a graph with n vertices and let C be a violating configuration for root r. Then $q < n$ and $C(r) = 0$.

Proof. If $q = n$, then there are at least $2\pi(G) - n + 1 \geq 2n - n + 1 = n + 1$ pebbles on n vertices. Since every vertex has at least one pebble and at least one vertex has at least two pebbles, a second pebble can be moved to any vertex. Clearly $C(r) < 2$. If $C(r) = 1$, then there are at least $2\pi(G) - q + 1 - 1 =$
\[\pi(G) + (\pi(G) - q) \geq \pi(G)\] other pebbles on the graph and a second pebble can be moved to \(r\).

Lemma 3. Let \(G\) be a Hamiltonian graph with \(n\) vertices, \(C\) a configuration with \(p \geq n + 2\) pebbles on \(q = n - 1\) vertices. Then two pebbles can be moved to any vertex in \(G\).

Proof. Since some vertex has at least two pebbles, any vertex that already has a pebble can get a second pebble by pebbling along the Hamiltonian cycle. Let \(r\) be the vertex without a pebble. Since \(p = n + 2\), either two vertices, \(u\) and \(v\), have at least two pebbles or some vertex \(u\) has 4 pebbles. In the first case, a pebble can be moved to \(r\) from each of \(u\) and \(v\) along two disjoint paths that are part of the Hamiltonian cycle. Similarly, if some vertex has 4 pebbles, two pebbles can be moved to \(r\) from \(u\) by following two disjoint paths along the Hamiltonian cycle.

Lemma 4. Let \(C\) be a violating configuration, \(u\) be a vertex with \(C(u) \geq 3\), and assume \(C(v) = 0\) for some neighbor of \(v\) of \(u\). Create configuration \(C'\) from \(C\) by moving one pebble from \(u\) to \(v\). Then \(C'\) is a violating configuration.

Proof. Let \(C\) be a violating configuration for some root \(r\) with \(p\) pebbles on \(q - 1\) vertices such that \(C(u) \geq 3\), and let \(v\) be a neighbor of \(u\) with \(C(v) = 0\). Since \(C\) is a violating configuration, \(p + q - 1 > 2\pi(G)\). Then \(C'\) has \(p - 1\) pebbles on \(q\) vertices. Since \(p - 1 + q > 2\pi(G)\) and \(r\) is still not reachable with two pebbles, \(C'\) is clearly a violating configuration.

Corollary 5. Let \(G\) be a graph that has no violating configurations with pebbles on \(q\) vertices and let \(C\) be a violating configuration with pebbles on \(q - 1\) vertices. If \(C(u) \geq 3\), then for each neighbor \(v\) of \(u\), \(C(v) \geq 1\). Equivalently, if \(C(v) = 0\), then \(C(u) \leq 2\) for each neighbor \(u\) of \(v\).

The following lemma is straightforward.

Lemma 6. Let \(P_n\) be a path on \(n\) vertices, \(K_3\) be a clique on 3 vertices with vertex set \(V(K_3) = \{v_1, v_2, v_3\}\), and let \(C\) be a pebbling configuration.

1. If \(n \leq 4\) and \(C(P_n) \geq n + 1\), then at least two pebbles can be moved to one of its endpoints.
2. If \(C(K_3) \geq 4\), then it is possible to move 2 pebbles to at least two of its vertices.
3. If \(C(K_3) \geq 5\), then 2 pebbles can be moved to any of its vertices.
4. If \(C(K_3) \geq 6\), then 4 pebbles can be moved to one of its vertices. Further, if \(C(v_1) + C(v_2) \geq 6\) then 2 pebbles can be placed on both \(v_1\) and \(v_2\) simultaneously.
5. If \(C(K_3) = 7\) and 4 pebbles cannot be moved to \(v_1\) or \(v_2\), then \(C(v_3) = 5\) and \(C(v_1) = C(v_2) = 1\) or \(C(v_1) = 7\) and \(C(v_2) = C(v_3) = 0\).
6. If \(C(K_3) = 8\) and 4 pebbles cannot be moved to \(v_1\), then \(C(v_1) = 0\) and \(C(v_2)\) and \(C(v_3)\) are both odd.
7. If \(C(K_3) \geq 9\), then 4 pebbles can be moved to any of its vertices.
8. If \(C(K_3) \geq 14\) and each vertex has at least one pebble, then 4 pebbles can be moved to any two of its vertices simultaneously.
3. The new Lemke graph

When the algorithm from [6] to determine whether or not a graph has the two-pebbling property was run on all ten-vertex graphs with diameter three, several new Lemke graphs were discovered with a very interesting property: all of the violating configurations have at least one vertex with an even number of pebbles. In other words, these are Lemke graphs that have the odd-two-pebbling-property. Since this was an unexpected result, it seemed prudent to verify it. The goal of this paper is to prove that one of these graphs, H (see Figure 1), does not have the two-pebbling property but does have the odd-two-pebbling-property, proving that these two properties are not equivalent. We will proceed by showing that $\pi(H) = 10$ and then prove that H has exactly 6 violating configurations, none of which satisfy the conditions of the odd-two-pebbling property.

![Figure 1: The new Lemke graph, H](image)

Let T_i be subgraph induced by vertices $\{a_i, b_i, c_i\}$ for $i \in \{1, 2, 3\}$. Let C be a configuration on H. Let $p_i = C(T_i)$ and q_i be the number of vertices on T_i with pebbles. Finally, let $\alpha_i = C(a_i)$, $\beta_i = C(b_i)$, $\gamma_i = C(c_i)$, and $\delta = C(d)$.

If moves are made on a configuration C, the result is a new configuration that is usually given a new name (e.g. C'). To simplify the notation in proofs, we will often continue to call the configuration C and use definitions from above even after moves have been made.

4. Pebbling Number

In this section we show that $\pi(H) = 10$. Clearly $\pi(H, v) \geq 10$ for all v. Due to the symmetry of H, we prove that $\pi(H, d) = \pi(H, a_3) = \pi(H, c_3) = 10$ and the result follows.

Theorem 7. $\pi(H, d) = 10.$
Proof. Let C be a configuration with 10 pebbles such that d is unreachable. By Lemma 6.3, $p_i \leq 4$ for $i \in \{1, 2, 3\}$. Without loss of generality, we may assume that $p_1 = 4$ and that $\alpha_1 = 3$ and $\beta_1 = 1$ (due to symmetry and unreachability of d). Further, it is impossible to move a pebble from T_2 or T_3 to T_1. If $p_2 = 4$ or $p_3 = 4$, Lemma 6.2 implies that a pebble can be moved to either d or to T_1, so $p_2 = p_3 = 3$. The pebbles on T_2 do not allow a pebble to be moved to either d or b_1. Thus, either $\alpha_2 = \beta_2 = \gamma_2 = 1$ or $\beta_2 = 3$ and $\alpha_2 = \gamma_2 = 0$. In the former case, d is clearly reachable along the path (a_1, b_1, a_2, c_2, d), so $\beta_2 = 3$ and $\alpha_2 = \gamma_2 = 0$. A similar argument shows that $\alpha_3 = 3$ and $\beta_3 = \gamma_3 = 0$. But then a pebble can be moved from a_3 to b_2 so that b_2 has four pebbles and d is reachable. Therefore, $\pi(H, d) = 10$.

Theorem 8. $\pi(H, c_3) = 10$.

Proof. Let C be a configuration of 10 pebbles on H. Without loss of generality, assume $p_1 \geq p_2$. If any of $\{b_3, a_3, d\}$ has two or more pebbles c_3 is reachable, so assume otherwise. There are 4 cases to consider.

Case 1: All three of $\{b_3, a_3, d\}$ have one pebble. Then $p_1 \geq 4$ and c_3 is reachable by Lemma 6.2.

Case 2: Two of $\{b_3, a_3, d\}$ have one pebble. If $p_1 \geq 5$, then both b_3 and d are reachable from T_1 by Lemma 6.3. Since at least one of these has a pebble, c_3 is reachable. Otherwise, $p_1 = p_2 = 4$. If $\delta = 0$, then $\beta_3 = \alpha_3 = 1$ and c_3 is reachable unless $\alpha_1 = \beta_2 = 0$. In this case, a pebble can be moved to d from both T_1 and T_2, so c_3 is reachable. If $\delta = 1$, then without loss of generality, $\alpha_3 = 0$ and $\beta_3 = 1$, and Lemma 6.2 implies that a pebble can be moved to either d or b_3 from T_1, making c_3 reachable.

Case 3: There is one pebble on $\{b_3, a_3, d\}$. In this case, $p_1 \geq 5$. If $\beta_3 = 1$ or $\delta = 1$, c_3 is reachable by Lemma 6.3, so assume $\alpha_3 = 1$. This implies that $\beta_2 \leq 1$. If $p_1 \geq 8$, clearly c_3 is reachable from T_1. This leaves 3 subcases.

Case 3.1: $p_1 = 5$. Then by Lemma 6.3, a pebble can be moved from T_1 to T_2, putting 5 pebbles on T_2, which allows for a move to a_3, making c_3 reachable.

Case 3.2: $p_1 = 6$. Then $p_2 = 3$. If $\beta_2 = 1$, then a_2 either has a pebble or can receive one from c_2, so a pebble can be moved from T_1 along the path (a_2, b_2, a_3, c_3). If $\beta_2 = 0$, there are two cases to consider. If $\alpha_2 = 3$, a move can be made from T_1 to a_2, making c_3 reachable through a_3. Otherwise, $\alpha_2 \leq 2$ and $\gamma_2 \geq 1$, so d can be reached from both T_1 and T_2 and c_3 is reachable.

Case 3.3: $p_1 = 7$. Then $p_2 = 2$. By Lemma 6.5, if c_3 is not reachable from T_1, then either $\beta_1 = 5$ and $\alpha_1 = \gamma_1 = 1$, or $\beta_1 = 7$ and $\alpha_1 = \gamma_1 = 0$. If d, b_1, or a_1 is reachable from T_2, the configuration is solvable. Thus, two vertices in T_2 have one pebble. If $\beta_2 = 0$, then one pebble from T_1 can be moved through T_2 to d, leaving 5 pebbles on T_1, allowing another pebble to reach d. Otherwise, $\beta_2 = 1$ and we move two pebbles from b_1 to a_2 and then pebble along the path (a_2, b_2, a_3, c_3).

Case 4: There are no pebbles on $\{b_3, a_3, d\}$. If $p_1 = p_2 = 5$, then 2 pebbles can be moved to d and one to c_3. If $p_1 \geq 8$, clearly c_3 is reachable. This leaves two cases.
Case 4.1: $p_1 = 6$. Then $p_2 = 4$. If d is reachable from T_2, then c_3 is reachable. Otherwise, either $\beta_2 = 3$ and $\alpha_2 = 1$ or $\beta_2 = 1$ and $\alpha_2 = 3$. If $\beta_2 = 3$, then move a pebble from b_2 to a_3. By Lemma 6.3, two pebbles can be moved to b_1 and then a pebble can be moved along the path $(b_1, a_2, b_2, a_3, c_3)$. If $\alpha_2 = 3$, a move from a_2 to b_1 would place 7 pebbles on T_1. If that configuration is unsolvable for c_3, Lemma 6.5 implies that in the initial configuration either $\alpha_1 = \gamma_1 = 1$ and $\beta_1 = 4$, or $\beta_1 = 6$. In either case, moving a pebble from b_1 to a_2 instead allows pebbling to d from both T_1 and T_2, making c_3 reachable.

Case 4.2: $p_1 = 7$. Then $p_2 = 3$. If c_3 is unreachable from T_1, then Lemma 6.5 implies that $\beta_1 = 5$ and $\alpha_1 = \gamma_1 = 1$, or $\beta_1 = 7$ and $\alpha_1 = \gamma_1 = 0$. If a pebble can be moved from T_2 to T_1, then c_3 is reachable since T_1 now has 8 pebbles. If a pebble can be moved from T_2 to d, c_3 is also reachable. Otherwise, $\beta_2 = 3$ or $\alpha_2 = \beta_2 = \gamma_2 = 1$. If $\beta_2 = 3$, then 2 pebbles can be moved from b_1 to a_2, one pebble from b_2 to a_3, and then one pebble can be moved along the path $(b_1, a_2, b_2, a_3, c_3)$. If $\alpha_2 = \beta_2 = \gamma_2 = 1$, move along the path (b_1, a_2, c_2, d) and the remaining pebbles on T_1 allow a second pebble to be moved to d, so c_3 is reachable.

Let H_1 be the subgraph induced by the set of vertices $\{a_1, b_1, c_1, b_3\}$ and $H_2 = H \setminus H_1$. We will prove several results that will be used in the next theorem.

Lemma 9. Let C be a configuration on H.

1. If $p_2 = 4$, then one pebble can be moved to a_3 unless $\beta_2 = 0$ and α_2 and γ_2 are both odd.
2. If $C(H_2) = 6$, then a pebble can be moved to a_3 unless $\delta = \alpha_2 = 3$.
3. If $C(H_2) \geq 7$, then a pebble can be moved to a_3.

Proof. The proof of statement 1 is straightforward.

For statement 2, let $C(H_2) = 6$ and assume $\alpha_3 = 0$. By Lemma 6.3, a_3 is reachable if $p_2 \geq 5$. Thus, assume $p_1 \leq 4$ and therefore $\gamma_3 + \delta \geq 2$.

If $\gamma_3 + \delta = 2$, then $p_2 = 4$. By statement 1, we can assume $\alpha_2 = 1$ and $\gamma_2 = 3$ or $\alpha_2 = 3$ and $\gamma_2 = 1$. If $\gamma_3 = \delta = 1$, a_3 is clearly reachable. Otherwise, $\delta = 2$, and we can get 4 pebbles to either a_2 or c_2, thus allowing a pebble to be moved to a_3.

If $\gamma_3 + \delta = 3$, then $\delta = 3$ and $\gamma_3 = 0$ or we can clearly reach a_3. In this case, $p_2 = 3$ and unless $\alpha_2 = 3$ (the exception in the statement), either 2 pebbles can be moved to b_2 or one more pebble to d, and a_3 is reachable. Finally, a_3 is clearly reachable if $\gamma_3 + \delta \geq 4$.

For statement 3, if $C(H_2) = 7$, it is possible to remove one pebble from C and avoid the configuration with $\delta = \alpha_2 = 3$. By statement 2, a_3 is reachable.

Theorem 10. $\pi(H, a_3) = 10$.

Proof. Let C be a configuration of 10 pebbles on H and assume $\alpha_3 = 0$. By Lemma 9.3, a_2 is reachable if $C(H_2) \geq 7$. This leaves 6 cases.

Case 1: $C(H_2) = 6$. By Lemma 9.2, a_3 is reachable unless $\delta = \alpha_2 = 3$. In this case, a pebble can be moved from a_2 to b_1 so that the path $\{b_3, a_1, b_1, c_1\}$
has 5 pebbles. By Lemma 6.1, two pebbles can be moved to either \(c_1\), in which case a fourth pebble can be added to \(d\), or to \(b_3\). In both cases, \(a_3\) can be reached.

Case 2: \(C(H_2) = 5\). Then \(C(H_1) = 5\) and by Lemma 6.1 at least 2 pebbles can be moved to \(b_3\) or \(c_1\) (by considering the path \(\{b_3, a_1, b_1, c_1\}\)), and at least 2 pebbles can be moved to \(b_3\) or \(b_1\) (by considering the path \(\{b_3, a_1, c_1, b_1\}\)). If two pebbles can be moved to \(b_3\), then \(a_3\) is reachable, so we can assume that 2 pebbles can be moved to either \(c_1\) or \(b_1\). If \(\alpha_2 = 3\), move a pebble from \(b_1\) to \(a_2\). Otherwise, move a pebble from \(c_1\) to \(d\). In either case, \(H_2\) now has 6 pebbles and \(\alpha_2 \neq 3\), so \(a_3\) is reachable by Lemma 9.2.

For the remaining cases, since \(C(H_1) \geq 6\), we can assume \(\beta_3 = 0\) since otherwise \(a_3\) is reachable. Thus, \(p_1 = C(H_1) \geq 6\). We will assume that \(a_3\) is not reachable from \(T_1\), so Lemma 6.4 implies that 4 pebbles can be moved to either \(b_1\) or \(c_1\). This implies that two pebbles can be moved to either \(d\) or \(\alpha_2\) from \(T_1\).

Case 3: \(C(H_2) = 4\). If \(\alpha_2 = 3\), move a pebble from \(T_1\) to \(\alpha_2\) and \(a_3\) is reachable. Similarly if \(\delta = 3\). Otherwise, move two pebbles to either \(d\) or \(\alpha_2\) from \(T_1\) so that \(C(H_2) = 6\). Since it is not that case that both \(\alpha_2 = 3\) and \(\delta = 3\), \(a_3\) is reachable by Lemma 9.2.

For the remaining cases \(C(H_2) \leq 3\), so \(p_1 \geq 7\). We will assume that 4 pebbles cannot be moved to \(a_1\) since otherwise \(a_3\) is reachable. Thus, \(\alpha_1 \leq 1\), so \(\beta_1 + \gamma_1 \geq 6\), and by Lemma 6.4, two pebbles can be placed on \(b_1\) and \(c_1\) simultaneously.

Case 4: \(C(H_2) = 3\), so \(p_1 = 7\).

Case 4.1: \(p_2 = 3\). If 4 pebbles can be moved to \(b_1\) from \(T_1\), then 2 pebbles can be moved from \(T_1\) to \(T_2\) and by Lemma 6.3, \(a_3\) is reachable. If 4 pebbles cannot be moved to either \(a_1\) or \(b_1\), then by Lemma 6.5, \(\gamma_1 \geq 5\), so a pebble can be added to either \(a_2\) or \(c_2\). Since either \(\beta_2 = 1\) or the parity of \(\alpha_2\) and \(\gamma_2\) differ, it is possible to move to either \(a_2\) or \(c_2\) so that \(a_3\) is reachable by Lemma 9.1.

Case 4.2: \(p_2 = 2\). Then \(\delta = 1\) or \(\gamma_3 = 1\). If 4 pebbles can be moved to \(b_1\) from \(T_1\), then by Lemma 9.1, we can assume \(\gamma_2 = \alpha_2 = 1\) and \(\beta_2 = 0\) since otherwise \(a_3\) is reachable. Move 2 pebbles to both \(b_1\) and \(c_1\). If \(\delta = 1\), move a pebble along the paths \((b_1, a_2, b_2)\) and \((c_1, d, c_2, b_2)\) so that \(b_2\) has two pebbles. If \(\gamma_3 = 1\), move a pebble from \(c_1\) to \(d\) and along the path \((b_1, a_2, c_2, d)\). In either case, \(a_3\) can be reached.

If 4 pebbles cannot be moved to either \(a_1\) or \(b_1\), by Lemma 6.5, either \(\gamma_1 = 5\) and \(\beta_1 = 1\) or \(\gamma_1 = 7\) and \(\beta_1 = 0\). Since 2 pebbles can be moved to \(d\), \(a_3\) is reachable if \(\gamma_3 = 1\), so assume \(\delta = 1\). If \(\gamma_1 = 7\) then we can move 3 more pebbles to \(d\). Otherwise, \(\gamma_1 = 5\) and \(\alpha_1 = \beta_1 = 1\). Since \(p_2 = 2\), there are four possibilities. If \(\beta_2 = 1\), then either \(\alpha_2 = 1\) or \(\gamma_2 = 1\) and a second pebble can be added to either \(a_2\) or \(c_2\) and then to \(b_2\). If \(\gamma_2 = 2\) or \(\alpha_2 = 2\) then 4 pebbles can be moved to \(a_1\). If \(\gamma_2 = \alpha_2 = 1\) then move a pebble along the paths \((c_1, b_1, a_2, b_2)\) and \((c_1, d, c_2, b_2)\) so \(b_2\) has two pebbles. In all cases, \(a_3\) is reachable.

Case 4.3: \(p_2 \leq 1\). Then \(\delta + \gamma_3 \geq 2\). If \(\gamma_3 \geq 2\), \(\delta \geq 3\), or both \(\delta \geq 1\) and \(\gamma_3 \geq 1\), then \(a_3\) is clearly reachable. Thus, \(\delta = 2\) and \(\gamma_3 = 0\). Then \(p_1 = 1\)
and either 4 pebbles can be moved to c_1 or, by Lemma 6.5, either $\beta_1 = 5$ and $\gamma_1 = \alpha_1 = 1$ or $\beta_1 = 7$ and $\alpha_1 = \gamma_1 = 0$. If $\beta_2 = 1$ or $\gamma_2 = 1$ then 2 pebbles can be moved to b_2, so $\alpha_2 = 1$. If $\beta_1 = 7$, we can move 3 more pebbles to a_2. Otherwise, $\beta_1 = 5$ and $\alpha_1 = \gamma_1 = 1$, so a second pebble can be moved to a_1 from d and 2 more pebbles can be moved to a_1 from b_1. In any case, a_3 is reachable.

Case 5: $C(H_2) = 2$. Then $p_1 = 8$ and if a_3 is not reachable from T_1, then Lemma 6.6 implies that $\alpha_1 = 0$ and $\beta_1 + \gamma_1 = 8$, where both are odd. No matter how these pebbles are placed, both d and a_2 are reachable with 2 pebbles from T_1, and one of them can receive 3 pebbles. Thus, a_3 can be reached if b_2 or c_3 has one pebble, d, c_2, or a_2 has two pebbles, or both d and a_2 have one pebble. Thus, we can assume either $\delta = \gamma_2 = 1$ or $\gamma_2 = \alpha_2 = 1$, and it is straightforward to verify that a_3 can be reached from any of the eight configurations on T_1.

Case 6: $C(H_2) \leq 1$. Then $p_1 = 9$ and the a_3 is reachable by Lemma 6.7.

5. Two-Pebbling Property

Lemma 11. Let C be a violating configuration on H with pebbles on q vertices. Then $4 \leq q \leq 7$.

Proof. Let C be a configuration of $p = 21 - q$ pebbles on q vertices of H. If $q = 1$, $p = 20 = 2 \pi(H)$ and 2 pebbles can be moved to any vertex.

If $q = 2$, $p = 19$, and some vertex u has at least ten pebbles. Since the diameter of H is 3, moving from u to any other vertex uses at most 8 pebbles, leaving at least 11 pebbles, enough to move a second pebble that vertex.

If $q = 3$, $p = 18$. Each of the three vertices with a pebble has at most 7 pebbles since otherwise one pebble can be placed on any other vertex leaving $\pi(H)$ pebbles on the graph, so a second pebble can be moved to that vertex. Thus each of the three vertices with pebbles, u, v, and w, has between 4 and 7 pebbles. No matter which vertices u, v, and w are, every vertex is within distance two of one of them. Thus, one pebble can be moved to any root using 4 pebbles, leaving 14 pebbles to move a second pebble.

By Lemma 2, $q \leq 9$ and r has no pebbles. If $q = 9$, $p = 12$ and since H is Hamiltonian, the result follows from Lemma 3.

If $q = 8$, r and some other vertex v have no pebbles. Since $p = 13$ and $H \setminus \{v\}$ is Hamiltonian, the result follows from Lemma 3.

Theorem 12. There are no configurations on H that violate the two-pebbling-property with d as the root.

Proof. Let C be a violating configuration for vertex d with $21 - q$ pebbles on q vertices. By Lemma 11, we only need to consider $4 \leq q \leq 7$. In all of these cases, $p \geq 14$. Therefore, $p_i \geq 5$ for some i. No matter how those pebbles are placed on T_i, d is reachable using only 4 pebbles, and the result follows from Theorem 1.

Lemma 13. Let C be a configuration on H with $\alpha_1 \geq 1$.

1. If $\alpha_1 + \gamma_1 \geq 7$, $\alpha_1 + \beta_1 \geq 7$, or $\alpha_1 + \beta_1 + \gamma_1 \geq 8$, then a pebble can be moved to a_3.

2. If $p_1 = 14$ and either $\beta_1 \geq 6$ and $a_2 \geq 1$ or $\gamma_1 \geq 6$ and $d \geq 1$, two pebbles can be moved to a_3.

Proof. The proof of statement 1 is straightforward. For the second statement, move 3 pebbles from b_1 to a_2 (or from c_1 to d) and then a pebble can be moved from a_2 (or d) to a_3. Since $p_1 = 8$ now, the result follows from statement 1.

Lemma 14. Let C be a violating configuration on H with root a_3 with pebbles on $q \leq 7$ vertices such that there are no violating configurations on $q+1$ vertices. Then $p_2 \leq 3$.

Proof. If $p_1 \geq 5$, Lemma 6.3 implies that a_3 is reachable from T_2. It is not too difficult to see that it requires at most 4 of the 5 pebbles, leaving at least 10 pebbles on H, allowing a second pebble to reach a_3. When $p_2 = 4$, each configuration either allows a_3 to be reachable with at most 4 pebbles or violates Corollary 5.

Theorem 15. H has no violating configurations with root a_3.

Proof. Let C be a violating configuration with $21 - q$ pebbles on q vertices. By Lemma 11, we only need to consider $4 \leq q \leq 7$. In all of these cases, $p \geq 14$. By Lemma 14, $p_2 \leq 3$. Also, $\gamma_3 + \delta \leq 3$ and $\beta_3 \leq 1$ by Theorem 1. This implies that $p_1 \geq 7$. Corollary 5 implies that $q_1 = 3$. Using Theorem 1 again, $\beta_3 = 0$, and thus $p_1 \geq 8$. Once again, Corollary 5 implies that $1 \leq \alpha_1 \leq 2$ (a fact we use often when applying Lemma 13.1), so $\beta_1 + \gamma_1 \geq 6$. By Theorem 1, if $\beta_1 \geq 2$, at least one of α_2 and β_2 is zero, and if $\gamma_1 \geq 2$, at least one of δ and γ_3 is zero. Since $\beta_1 + \gamma_1 \geq 6$, it follows that at least one of α_2, β_2, δ, and γ_3 is zero.

Case 1: $q = 7$. Then $p = 14$. Since $\alpha_3 = \beta_3 = 0$, exactly one other vertex has no pebbles. Thus, either $\delta = \gamma_3 = 1$ or $\alpha_2 = \beta_2 = 1$. In either case, $\gamma_2 = 1$.

Case 1.1: $\delta = \gamma_3 = 1$. Then $\gamma_1 = 1$, so $\beta_1 \geq 5$, and Corollary 5 implies that $1 \leq \alpha_2 \leq 2$, so that $\beta_2 = 0$. If $\alpha_2 = 2$, move a pebble along (a_2, c_2, a_3) and Lemma 6.7 implies that a_3 is reachable with a second pebble since $p_1 = 9$. If $\alpha_2 = 1$, then $\alpha_1 + \beta_1 = 9$. Move along (b_1, c_1, d, c_3, a_3) leaving $\alpha_1 + \beta_1 \geq 7$, so Lemma 13.1 applies.

Case 1.2: $\alpha_2 = \beta_2 = 1$. Then $\beta_1 = 1$, and $\delta + \gamma_3 = 1$, so $\alpha_1 + \gamma_1 = 9$. Pebble along $(c_1, b_1, a_2, b_2, a_3)$ leaving $\alpha_1 + \gamma_1 \geq 7$, so Lemma 13.1 applies.

Case 2: $q = 6$. Then $p = 15$. Since $p_2 \leq 3$ and $\delta + \gamma_3 \leq 3$, then $p_1 \geq 9$. Theorem 1 implies that either $\delta = 0$ or $\gamma_3 = 0$, and either $\alpha_2 = 0$ or $\beta_2 = 0$, and all other vertices have at least one pebble. This gives us four cases.

Case 2.1: $\delta = \alpha_2 = 0$. Corollary 5 implies that a_1, b_1, and c_1 each have at most two pebbles, contradicting the fact that $p_1 \geq 9$.

Case 2.2: $\delta = \beta_2 = 0$. Then $\gamma_3 = 1$, $\gamma_1 \leq 2$, and $\gamma_2 + \alpha_2 \leq 3$, so $p_1 \geq 11$ and $\beta_1 \geq 7$. If $\gamma_1 = 2$, move a pebble from c_1 to d and then move a pebble along $(b_1, a_2, c_2, d, c_3, a_3)$, leaving $\alpha_1 + \beta_1 \geq 7$. If $\gamma_1 = 1$, there are two cases to consider. If $\alpha_2 + \gamma_2 = 3$, move a pebble from T_2 to d. Then move a pebble along
Lemma 16. Let C be a configuration on H. Then for $i \in \{1, 2, 3\}$, the following hold.

1. If $p_i \geq 8$, or $p_i = 7$ and $q_i = 2$, then a pebble can be moved to c_3.
2. If $\delta = 1$ and $p_i + q_i \geq 13$, two pebbles can be moved to c_3.
3. If $p_i + q_i \geq 17$, two pebbles can be moved to c_3.

Proof. The statements are obvious when $i = 3$. Statement 1 follows from Lemma 6.5. To prove statement 2, when $q_i = 1$, use at most 4 pebbles from T_i to move to c_3, leaving 8 on some vertex of distance at most 3 from c_3. For $q_i = 2$ and $q_i = 3$, make moves from T_i to d to c_3, and apply statement 1. For statement 3, apply statement 1 for $q_i = 1, 2$ and use Lemma 6.8 for $q_i = 3$.

Theorem 17. H has exactly two violating configurations with c_3 as the root.
Proof. Let C be a violating configuration with $21 - q$ pebbles on q vertices. By Lemma 11, we only need to consider $4 \leq q \leq 7$. In all of these cases, $p \geq 14$. By Theorem 1, c_3 has no pebbles, a_3, b_3, and d each have at most one pebble, and a_1, c_1, c_2, and b_2 each have at most three pebbles. We can assume that $p_1 \geq p_2$. Since $p_1 + p_2 \geq 11$, $p_1 \geq 6$. If both a_1 and b_3 have at least one pebble, a pebble can be moved to c_3 using four pebbles. Thus, at least one of a_1 or b_3 has no pebbles. Similarly, at least one of c_1 or d has no pebbles.

Case 1: $q = 7$. Then $p = 14$, and since two of a_1, b_3, c_1, and d have no pebbles, each of b_1, a_2, b_2, c_2, and a_3 has at least one pebble. Theorem 1 implies that $\alpha_2 = \beta_2 = \gamma_2 = \alpha_3 = 1$. Clearly $\alpha_1 + \beta_3 \leq 3$ and $\gamma_1 + \delta \leq 3$, so $\beta_1 \geq 4$. Pebble along the path $(a_1, a_2, b_2, a_3, c_3)$, leaving 8 pebbles on $\{a_1, b_1, c_1, b_3, d\}$. Since the subgraph induced by $\{a_1, b_1, c_1, b_3, d\}$ has C_6 as a spanning subgraph, and $\pi(C_6) = 8$, a second pebble can be moved to c_3.

For the remainder of the cases, $q \leq 6$ and $p \geq 15$. Since $p_1 \geq 6$, $\delta = \beta_3 = 0$ by Theorem 1. This and the fact that $\alpha_3 \leq 1$ implies that $p_1 + p_2 \geq 14$, so $p_1 \geq 7$. Corollary 5 implies that $1 \leq \alpha_1 \leq 2$ and $1 \leq \gamma_1 \leq 2$, so $\beta_1 \geq 3, \gamma_1 = 3$, and $\alpha_2 \geq 1$. By Theorem 1, at least one of b_2 or a_3 has no pebbles.

Case 2: $q = 6$. Then $p = 15$, exactly one of b_2 or a_3 has no pebbles, and $\alpha_2 = 1$ by Theorem 1.

Case 2.1: $\beta_2 = 0$. Then $1 \leq \alpha_2 \leq 2$ by Corollary 5 and $p_1 \geq 11$. If $\alpha_2 = 2$, move a pebble along the path (a_2, c_2, d). If $\alpha_2 = 1$, then $p_1 = 12$ and we move a pebble along the path (b_1, a_2, c_2, d). In both cases, $p_1 \geq 10$ and $\delta = 1$ after the moves, so Lemma 16.2 applies.

Case 2.2: $\alpha_3 = 0$. Since $q_2 = 3$ and $p_1 \geq p_2, 3 \leq p_2 \leq 7$. Since $\alpha_3 = \beta_3 = \delta = 0$, Corollary 5 implies that each of α_1, γ_1, and β_2 is 1 or 2.

Case 2.2.1: $3 \leq p_2 \leq 6$. If $p_2 = 3$, then $a_2 = 1$, and $p_1 = 12$. Move a pebble along the path (b_1, a_2, c_2, d). If $4 \leq p_2 \leq 5$, then $p_1 \geq 10$ and since $q_2 = 3$, a pebble can be moved from T_2 to d. If $p_2 = 6$, $p_1 = 9$, and since $q_2 = 3$, a pebble can be moved to both d and b_1 from T_2. In all three cases, $p_1 \geq 10, q_1 = 3$, and $\delta = 1$ after the moves, so Lemma 16.2 applies.

Case 2.2.2: $p_2 = 7$. Then $p_1 = 8$ and c_3 can be reached from T_1 by Lemma 16.1. If $\beta_2 = 2$, c_3 can also be reached from T_2. Thus $\gamma_2 = \beta_2 = 1$ and $\alpha_2 = 5$. If $\gamma_1 = 2$, then c_3 can be reached using 5 pebbles from c_1, a_2, and c_2, so Theorem 1 applies. Thus $\gamma_1 = 1$. If $\alpha_1 = 2$, then $\beta_1 = 5$. Move two pebbles from b_1 to a_1 and then through b_2 to c_3. Then move along the paths $(a_2, b_1, c_1, d), (a_2, c_2, d)$, and from d to c_3 with a second pebble. This implies that $\alpha_1 = \gamma_1 = \gamma_2 = \beta_2 = 1, \beta_1 = 6, and \alpha_2 = 5$. Because of the symmetry of the graph, if we remove our assumption that $p_1 \geq p_2, \beta_1 = 5$ and $\alpha_2 = 6$ also leads to a violating configuration. It is easy to see that if we add a pebble to either b_1 or a_2, it is possible to move two pebbles to c_3. Thus, when $q = 6$ there are exactly two violating configurations with $p = 15$, and none with $p \geq 16$.

Case 3: $q = 5$. Then $p = 16$ and $p_1 \geq 8$, so Theorem 1 implies $\gamma_3 = \delta = \beta_3 = 0, \alpha_1 = \gamma_1 = 1, and \gamma_2 = 2$. Exactly one of a_3, b_2, and c_2 has any pebbles.

Notice that there are exactly 16 configurations of pebbles with $q = 5$ and $p = 16$ that yield one of the violating configurations above after a move is made (8 for each), and it is easy to check that they are not violating configurations.
before the move. For instance, if \(\beta_1 = 8, \alpha_2 = 5, \) and \(\alpha_1 = \gamma_2 = \beta_2 = 1, \) move from \(b_1 \) to \(a_2 \) and apply Lemma 16.1 to both \(T_1 \) and \(T_2. \) Similarly for \(\beta_1 = 6, \alpha_2 = 5, \alpha_1 = 3, \) and \(\gamma_2 = \beta_2 = 1. \) Lemma 4 implies that we can assume for the remainder of the cases that if \(C(v) = 0, \) then \(C(u) \leq 2 \) for any neighbor \(u \) of \(v. \) Thus, \(1 \leq \alpha_2 \leq 2 \) since at least one of its neighbors has no pebbles. Similarly, \(\beta_2 \leq 2. \)

If \(\beta_2 = 2, \) then \(\gamma_2 = \alpha_3 = 0 \) and \(\beta_1 \geq 10. \) If \(\alpha_2 = 2, \) move from both \(a_2 \) and \(b_2 \) to \(c_2 \) and then to \(d. \) If \(\alpha_2 = 1, \) then \(\beta_1 = 11. \) Pebble along the path \((b_1, a_2, c_2) \) and then \((b_2, c_2, d) \) leaving \(\beta_1 = 9. \) In either case, Lemma 16.2 applies.

If \(\beta_2 \leq 1, \) then \(\beta_2 + \gamma_2 + \alpha_3 = 1. \) Thus, either \(\beta_1 = 12 \) and \(\alpha_2 = 1, \) or \(\beta_1 = 11 \) and \(\alpha_2 = 2 \) and we move one pebble from \(a_2 \) to \(b_1. \) In both cases, Lemma 16.3 applies.

Case 4: \(q = 4. \) Then \(p = 17. \) Corollary 5 and Theorem 1 imply that \(\alpha_1 = \gamma_1 = 1, \) \(1 \leq \alpha_2 \leq 2, \) and \(13 \leq \beta_1 \leq 14, \) and Lemma 16.3 applies.

Given the symmetry of the graph, the following result is obvious.

Theorem 18. \(H \) has exactly 6 violating configurations.

Theorem 19. \(H \) does not have the two-pebbling property, but does have the odd-two-pebbling property.

Proof. \(H \) does not have the two-pebbling property by Theorem 18. All of the violating configurations have \(p = 15 \) and \(r = 5, \) and since \(15 \neq 20 - 5 = 2\pi(H) - r, \) they do not violate the odd-two-pebbling property.

