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THE COMPLEXITY OF PEBBLING IN DIAMETER TWO GRAPHS∗

CHARLES A. CUSACK† , TIMOTHY LEWIS† , DANIEL SIMPSON† , AND SAMUEL

TAGGART‡

Abstract. Given a simple, connected graph, a pebbling configuration is a function from its vertex
set to the nonnegative integers. A pebbling move between adjacent vertices removes two pebbles from
one vertex and adds one pebble to the other. A vertex r is said to be reachable from a configuration
if there exists a sequence of pebbling moves that places one pebble on r. A configuration is solvable
if every vertex is reachable. We prove tight bounds on the number of vertices with two and three
pebbles that an unsolvable configuration on a diameter two graph can have in terms of the size of
the graph. We also prove that determining reachability of a vertex is NP-complete, even in graphs
of diameter two.
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1. Introduction. Let G = (V,E) be a simple, connected graph with vertex set
V , edge set E, and n(G) = |V | (or just n, if the graph is clear from context). The
distance between u, v ∈ V (written dist(u, v)) is the number of edges in the shortest
path between u and v. The diameter of a graph is the maximum distance between any
two vertices in G. If U ⊆ V and v ∈ V , we define NU (v) = {u ∈ U |u is adjacent to v}.
That is, NU (v) are the neighbors of v from U .

A pebbling configuration (or just configuration) is a function C : V → N (the
nonnegative integers), where C(v) represents the number of “pebbles” placed on vertex
v. For k ∈ N we define Vk = {v ∈ V |C(v) = k}. That is, Vk is the set of vertices
that have k pebbles. Given u, v ∈ V , with u and v adjacent, we define a pebbling
move from u to v (denoted (u, v)) to be the process of removing two pebbles from
u and adding one pebble to v. If σ is a sequence of pebbling moves, then Cσ is
the configuration after the pebbling moves from σ have been executed starting with
configuration C. A sequence of pebbling moves is executable if after each successive
move every vertex has a nonnegative number of pebbles on it. From now on we will
assume that a sequence of pebbling moves is executable unless otherwise stated.

We will employ several more definitions which will help us rigorously characterize
sequences of pebbling moves. A sequence σ that accomplishes some goal (e.g., places
one pebble on a specified vertex) is minimal if removing any pebbling moves from σ
renders the goal unattainable. Likewise, σ is a minimum sequence of pebbling moves
if it accomplishes the goal in the smallest possible number of pebbling moves. The
following lemma is a restatement of Lemma 2.7 in [10].

Lemma 1. Let C be a pebbling configuration and σ a minimal pebbling sequence
that places k > C(r) pebbles on some vertex r. If the moves from σ are viewed as
directed edges on a graph, σ is acyclic.
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Given a pebbling configuration C, we say r ∈ V is reachable if there exists
a pebbling sequence σ such that Cσ(r) > 0. A configuration is solvable if ev-
ery vertex is reachable. For example, a diameter two graph with four pebbles on
any vertex is guaranteed to be solvable. The computational problems of determin-
ing reachability (which we will call Reachable) and solvability (Solvable) have
come to the attention of researchers in the last decade. It is not difficult to see
that these problems are computationally equivalent. The fact that Reachable is
NP-complete has been proven at least three times, starting with Hurlbert and Kier-
stead [9]. Subsequent to this Watson [11] and (independently) Milans and Clark
[10] proved that Reachable and several other graph pebbling problems are NP-
complete. We will prove that Reachable is NP-complete once more with a reduc-
tion inspired by that of Milans and Clark, but which is simpler and smaller. Our
reduction allows for an additional reduction to reachability in diameter two graphs
(D2-Reachable).

The pebbling number, denoted π(G), is the smallest number of pebbles such that if
there are π(G) pebbles on the graph, the graph is solvable no matter how the pebbles
are placed. Determining pebbling number (Pebbling-Number) was shown in [10]
to be ΠP2 -complete.

Graph pebbling was first suggested by Lagarias and Saks and developed by Chung
in [4], where the pebbling number was used as a tool for studying the zero-sum
sequence problem. Since then, it has received attention from researchers interested in
its properties outside of a number-theoretic setting. In her paper, Chung sets forth one
particular conjecture, dubbed Graham’s conjecture, that has captured the attention
of numerous researchers. The conjecture states that for any two graphs G1 and G2,
π(G1�G2) ≤ π(G1)π(G2), where � denotes the Cartesian product. Though unproven
in general, it has been verified for various families of graphs. For a more complete
survey of results on this problem and other generalizations of graph pebbling, [7] and
[8] are excellent resources.

Because many pebbling problems are computationally hard, a few researchers
have turned their attention to the special case of diameter two graphs. In a proba-
bilistic sense, almost every graph has diameter two [5], so results with this restriction
still shed light on pebbling in graphs as a whole. Restricting a graph’s diameter causes
the pebbling number to be much better behaved, with all diameter two graphs having
pebbling number π(G) = n (called Class 0) or π(G) = n+ 1 (Class 1).

Clarke, Hochberg, and Hurlbert give a characterization of Class 1 graphs in [5],
which Blasiak and Schmitt correct in [3]. While the characterization discussed in these
papers implies that the pebbling number for diameter two graphs can be computed
in polynomial time, [2] provides an explicit algorithm, verifying that the problem
is in P. Herscovici, Hester, and Hurlbert give a slightly improved algorithm in [6].
A polynomial-time algorithm to solve D2-Reachable on all Class 1 graphs and
Class 0 graphs with small connectivity is given in [2]. These results suggested that
a polynomial-time algorithm for D2-Reachable would be possible. We show here
that this is in fact not possible unless P = NP, by proving that D2-Reachable is
NP-complete.

On the way to our main result we prove tight bounds on |V2| and |V3| for unsolvable
configurations on diameter two graphs. These results have at least two implications.
First, the worst case complexity of the algorithm in [2] is improved, although the worst
case is still exponential. Second, they may lead to an improvement of the threshold
for diameter two graphs. Given a sequence of graphs G = {G1, G2, . . . , Gn, . . .}, where
Gn has n vertices, a threshold for G is a function t(n) such that if asymptotically more
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(less) than t(n) pebbles are placed randomly on Gn, then the probability that the
configuration is solvable (unsolvable) approaches 1 as n approaches infinity. For more
on thresholds, see [1].

2. Constructions. In this section we describe two constructions that will be
used to prove a few bounds and show that D2-Reachable is NP-complete.

2.1. An important diameter two graph. For k ≥ 2, define H(k) to be the
graph whose vertices are the subsets of {1, . . . , k} with one or two elements and whose
edges consist of pairs of vertices whose sets intersect. Label each vertex vA, where
A is the subset corresponding to the vertex. If A = {a, b}, then we write vA as va,b,
and similarly if A = {a}, we will write va. We can describe the edges in H(k) using
this new notation: given sets A and B, {vA, vB} ∈ E(H(k)) if and only if A∩B �= ∅.
Notice that n(H(k)) = k +

(
k
2

)
=

(
k+1
2

)
.

Lemma 2. H(k) has diameter two.
Proof. Let vA, vB ∈ V (H(k)), with vA �= vB . If A∩B �= ∅, then vA is adjacent to

vB. If A ∩ B = ∅, then let S = {a, b}, where a ∈ A and b ∈ B. Note that S ∩ A �= ∅
and S ∩B �= ∅. Therefore vA and vB are adjacent to vS . In either case the maximum
distance between vA and vB is 2.

Lemma 3. Let C be a configuration of pebbles on H(k) such that C(va) ≤ 3 and
C(va,b) = 0 for all a, b ∈ {1, . . . , k} with a �= b. Then for any pebbling sequence σ,
Cσ(va) ≤ C(va) for all a ∈ {1, . . . , k}.

Proof. Let σ be a minimum sequence of pebbling moves that adds one pebble to
va for some a. Without loss of generality, assume a = 1 and that the last move is
(v1,2, v1). Clearly σ does not add any pebbles to vb for any b �= 1, since this would
imply a shorter sequence which adds a pebble to a vertex vb, contradicting the mini-
mality of σ. Two pebbles must be placed on v1,2, at most one of which can be from
v2 since C(v2) ≤ 3. Thus one pebble must come from v1,b or v2,b for some b. If the
pebble came from v1,b, then moving from v1,b to v1 directly yields a shorter sequence.
Similarly, if one came from v2,b, then moving to v2 yields a shorter sequence.

2.2. Embedding a graph in H(k). Let G = (V,E) be a graph with V =
{v1, . . . , vn} such that n ≥ 2. Define H(G) to be the graph with vertex set V ∪ V ′,
where V ′ = {va,b : va, vb ∈ V and va �= vb}. The edge set of H(G) will be E ∪ E′,
where E′ = E(H(n)). Given a configuration C on G, we can define configuration
C′ on H(G) by defining C′(v) = C(v) if v ∈ V and 0 otherwise. Essentially, H(G)
embeds G into the 1-element subsets of H(n).

Lemma 4. H(G) has diameter at most 2.
Proof. Note that H(n) is a subgraph of H(G) with the same vertex set. Because

the addition of edges cannot increase a graph’s diameter, the diameter of H(G) is no
greater than the diameter of H(n). Thus, by Lemma 2, H(G) has at most diameter
two.

Lemma 5. Let C be a configuration on G such that for any pebbling sequence σ,
Cσ(v) ≤ 3 for all v ∈ V . Then any vertex r ∈ V is reachable in G from C if and only
if r is reachable in H(G) from C′.

Proof. If r is reachable in G from C, then we can use the same sequence of moves
to reach r in H(G) from C′.

Conversely, let σ be a minimal sequence of pebbling moves on H(G) that places
one pebble on r ∈ V . Order σ such that before the first move along an edge in E′

occurs, no more moves along edges in E are possible (that is, without first making
one or more moves in E′). Let ψ be the subsequence containing these moves in E,
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and ρ the next subsequence of moves in E′. Because C′
ψ(v) ≤ 3 when v ∈ V and

C′
ψ(u) = 0 when u ∈ V ′, Lemma 3 implies that ρ does not add any pebbles to any

v ∈ V , including r. This implies that no additional moves in E are possible after ψ
and ρ, so these are all of the moves from σ. But the moves from ρ do not place a
pebble on r, so σ being minimal implies that ρ is empty. Thus r is reachable in the
induced subgraph of H(G) with the vertex set V , which is the graph G.

3. Bounds. In this section we will develop tight bounds on |V2| and |V3| for
unsolvable configurations on diameter two graphs. For each of these we will utilize
the constructions just developed to create unsolvable configurations on diameter two
graphs that meet the bound. We will then show that these graphs are the smallest
possible.

3.1. Vertices with three pebbles. This case is fairly straightforward.
Theorem 6. The smallest unsolvable diameter two graph that contains k vertices

with three pebbles has
(
k+2
2

)
vertices.

Proof. Let C be a pebbling configuration on H(k+1) such that C(vi) = 3 for all
i ∈ {1, . . . , k} and C(v) = 0 otherwise. H(k+1) has

(
k+2
2

)
vertices, and by Lemma 3

vk+1 is unreachable from C.
Let G be a diameter two graph with an unsolvable pebbling configuration C

such that |V3| = k ≥ 1. Then there must be at least one vertex r in G that is
not reachable. Let K = V3 ∪ {r}. If any elements of K are adjacent or if three
or more elements of K are adjacent to the same vertex, then G is solvable from
C. Since G has diameter two, for every pair of vertices u, v ∈ K there must be a
unique vertex that is adjacent to both u and v. The number of these pairs is

(|K|
2

)
,

so n(G) ≥ |K|+ (|K|
2

)
= k + 1 +

(
k+1
2

)
=

(
k+2
2

)
.

Solving for k yields the following corollary.
Corollary 7. A configuration C on a diameter two graph G with n vertices is

solvable if |V3| >
√
2n+ 1/4− 3/2.

3.2. Vertices with two pebbles. The case for |V2| is a little more involved
and requires modifying our previous construction slightly.

Theorem 8. The smallest unsolvable diameter two graph that contains k vertices
with two pebbles has

(
k+2
2

)− �k/2� vertices.
We will prove this result by developing a construction that meets the requirements

of the theorem and proving that it is the smallest graph that does so.
For k ≥ 1 define G = (V,E), where V = {v1, . . . , vk+1} and E = {vi, vi+1} for

all i ≡ 0 mod 2 (i.e., {v2, v3}, {v4, v5}, . . .). Then define H2(k) to be the induced
subgraph of H(G) with the vertex set V (H(G)) \ {va,b : {va, vb} ∈ E}. The number

of edges in G is �k/2�, so the number of vertices in H2(k) is
(
k+2
2

)− �k/2�.
Lemma 9. H2(k) has diameter two.
Proof. Let vA, vB ∈ V , where vA �= vB. If A ∩ B �= ∅, then vA is adjacent to

vB. If |A| = |B| = 1, let A = {a} and B = {b}. Then either vA and vB are adjacent
to each other or both are adjacent to va,b. If, without loss of generality, |A| = 2,
then let A = {a, c} and b ∈ B. Then either va,b ∈ V or vc,b ∈ V (or both). Thus
dist(vA, vB) ≤ 2.

Lemma 10. Let C be the configuration on H2(k) such that C(vi) = 2 for i > 1
and C(v) = 0 otherwise. H2(k) is unsolvable from C.

Proof. In G, v1 is not reachable and every other vertex can accumulate no more
than three pebbles. By Lemma 5, v1 is not reachable in H(G). Since H2(k) is a
subgraph of H(G), v1 is not reachable in H2(k).
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Fig. 1. A triple chain (left) and a minal (right).

For the remainder of this section let C be an unsolvable configuration on a diam-
eter two graph G, let some vertex r be unreachable, and let |V2| = k ≥ 1. Define an
equivalence relation R on V − V2 − {r} by x ∼ y if NV2(x) = NV2(y). Let X be a set
of representatives of the equivalence classes of R, and let P and T be the subsets of X
whose vertices are adjacent to two and three elements of V2, respectively. Each vertex
x ∈ P ∪T can be uniquely labeled by NV2(x). For example, if NV2(x) = {a, b, c}, then
x = {a, b, c}.

Lemma 11. If x, y ∈ T , then |x ∩ y| �= 1.
Proof. Assume otherwise, with x = {a, b, c} and y = {c, d, e}. The moves (a, x),

(b, x), (x, c), (d, y), (e, y), (y, c) place two additional pebbles on c. So c now has four
pebbles, and G is solvable from C, a contradiction.

Corollary 12. Let x, y, z ∈ T such that |x ∩ y| = 2. Then either |x ∩ z| =
|y ∩ z| = 2 or |x ∩ z| = |y ∩ z| = 0.

The previous corollary implies that T can be partitioned as T = ∪li=1Ti such that
if x, y ∈ Ti, then |x ∩ y| = 2, and if x ∈ Ti and y ∈ Tj, then |x ∩ y| = 0 when i �= j.
More importantly, this partition of T defines a partition of NV2(T ) in the obvious
way.

Lemma 13. If a, b ∈ V2 are adjacent and b is adjacent to x ∈ T , then a is adjacent
to x.

Proof. Let a, b ∈ V2 be adjacent, and let x = {b, c, d} ∈ T . If a /∈ {c, d}, then the
moves (c, x), (d, x), (x, b), (a, b) place two additional pebbles on b. So b now has four
pebbles, and G is solvable from C, a contradiction. Therefore either a = c or a = d
and a is adjacent to x.

Lemma 14. For every x ∈ V2∪T there is a vertex ux /∈ V2∪P ∪T that is adjacent
to x and r that is not adjacent to any other vertex in V2 ∪ T .

Proof. Since G has diameter two every x ∈ V2 ∪ T must be adjacent to a vertex
ux also adjacent to r. Since ux is adjacent to r, it cannot be in V2 ∪ P ∪ T . Assume
for some x, y ∈ V2 ∪ T that ux is adjacent to both x and y.

If x, y ∈ V2, then the moves (x, ux), (y, ux), (ux, r) place a pebble on r.
If x ∈ V2 and y = {a, b, c} ∈ T , without loss of generality assume x �∈ {b, c}.

Then the moves (x, ux), (b, y), (c, y), (y, ux), (ux, r) place a pebble on r. A similar
argument works if y ∈ V2 and x ∈ T .

If x = {a, b, c}, y = {d, e, f} ∈ T , then either x ∩ y = ∅ or, without loss of
generality, e = a and f = b. In either case, the moves (a, x), (c, x), (f, y), (d, y),
(x, ux), (y, ux), (ux, r) place a pebble on r.

In all cases we get a contradiction, so ux cannot be adjacent to both x and y.
Let R ⊆ T be an element of the partition defined after Corollary 12. If every

element of R is adjacent to the same a, b ∈ V2, then R is called a triple chain.
Otherwise we call R a minal. See Figure 1. Notice that a minal must contain at least
three vertices.

Lemma 15. Let M be a minal and S ⊆ V2 be the set of all vertices in V2 adjacent
to any vertex in M . Then |S| = 4 and |M | ∈ {3, 4}.
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Proof. Let {a, b, c}, {b, c, d} ∈M . Some vertex in M must not contain both b and
c, since M is not a triple chain. Assume that this vertex is {e, f, g}. Then {e, f, g} ∩
{a, b, c} is either {a, b} or {a, c}, so a ∈ {e, f, g}. Similarly, {e, f, g} ∩ {b, c, d} is either
{b, d} or {c, d}, which means that d ∈ {e, f, g}. The previous arguments also imply
that either b ∈ {e, f, g} or c ∈ {e, f, g}. Thus {e, f, g} is either {a, b, d} or {a, c, d}.
Finally notice that M cannot contain an element {b, c, h}, where h �∈ {a, d}, since it
would violate Corollary 12. Therefore M contains either three or four elements, and
|S| = 4.

Theorem 16. If G is a diameter two graph and there exists an unsolvable con-
figuration C such that |V2| = k, then n ≥ (

k+2
2

)− �k/2�.
Proof. Let l be the number of triple chains and ai be the number of vertices in

triple chain i for i ∈ {1, . . . , l}, m be the number of minals, and p be the number of
pairs of elements of V2 that are neighbors of each other but that are not adjacent to
any vertex in T .

Since G is unsolvable there is an unreachable vertex r. Lemma 14 implies that
for every vertex in V2 ∪ T there is another unique vertex in G to guarantee it has
diameter two. These facts imply n ≥ 1 + 2|V2 ∪ T |+ |P |. Every pair of vertices in V2
must either be neighbors or be adjacent to the same vertex in P or T . Each minal
covers exactly six pairs, and each triple chain of length ai covers exactly 2ai+1 pairs,
so |P | ≥ (

k
2

) −∑l
i=1(2ai + 1) − p − 6m. Since minals with four elements still cover

only six pairs, we will assume that minals are of size 3. Then the minimum number
of vertices that must be in G is

n ≥
r︷︸︸︷
1 +2

⎛
⎜⎜⎜⎜⎝

|V2|︷︸︸︷
k +

|T |︷ ︸︸ ︷
l∑
i=1

ai + 3m

⎞
⎟⎟⎟⎟⎠+

|P |︷ ︸︸ ︷(
k

2

)
−

l∑
i=1

(2ai + 1)− p− 6m

= 1 + 2k +

(
k

2

)
− l − p

=

(
k + 2

2

)
− l − p.

This is minimized by maximizing l+p. Notice that Lemma 13 implies that k ≥ 3l+2p,
so l + p is maximized when l = 0 and p = �k/2�. Thus the number of vertices in
an unsolvable diameter two graph with k vertices that have two pebbles is at least(
k+2
2

)− �k/2�.
This theorem and Lemma 10 prove Theorem 8.
Corollary 17. A configuration C on a diameter two graph G with n vertices is

solvable if |V2| >
√
2n− 1− 1.

4. D2-REACHABLE is NP-complete. In this section we will reduce a restricted
form of 3-SAT to Reachable, reproving a result due to Milans and Clark [10], who
use an intermediate reduction to a form of reachability where moving more than once
between any two vertices is prohibited. Our reduction, while similar, avoids this
intermediate step. This is made possible by a special property of our construction: no
vertex can accumulate three or more pebbles after any sequence of pebbling moves.
This simplifies our proof and allows us to prove that D2-Reachable is NP-complete.

4.1. The construction. The restricted form of 3-SAT is the same as that used
in [10]. A Boolean expression Φ is an instance of R3-SAT if the following hold:
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1. Φ has at least two clauses.
2. Each clause of Φ contains two or three variables.
3. Each variable appears either once or twice in its positive form.
4. Each variable appears exactly once in its negative form.

The authors of [10] prove that determining the satisfiability of an expression in this
form is NP-complete.

Let Φ be an instance of R3-SAT with m clauses in the n variables x1, . . . , xn.
We will define a function that maps Φ to an instance of Reachable. To do so, we
will construct a graph GΦ = (VΦ, EΦ) and a configuration C. As we describe our
construction, refer to Figure 2 for an illustrative example.

Fig. 2. GΦ and C for Φ = (x̄1 ∨ x2) ∧ (x1 ∨ x̄2 ∨ x3) ∧ (x2 ∨ x̄3), with the number of pebbles
indicated within the vertex.

For each variable xi, we will create a variable gadget: construct three vertices x1i ,
x̄i, and x

2
i , with edges {x1i , x̄i} and {x̄i, x2i }. Vertices x1i and x2i correspond to positive

instances of xi, and x̄i corresponds to the negative instance.
For each clause Cj , containing literals t1, t2, and possibly t3, construct a corre-

sponding OR gadget: create a vertex gj and, for each literal tk in Cj , create a vertex
okj . We will refer to the set of such okj as Oj . For all j ∈ {1, . . . ,m} connect gj to
each v ∈ Oj , and connect each such v to a corresponding vertex in a variable gadget.
That is, if tk is xi, connect v to one of x1i and x2i . If tk is x̄i, instead connect v to
x̄i. In doing so, connect each vertex in each variable gadget to at most one vertex in⋃
j Oj . This can be done because each variable appears once in its negative form and

once or twice in its positive form. It should be noted that there is no correspondence
between the subscripts and/or superscripts in the variable gadgets and OR gadgets.

Finally, for j ∈ {1, . . . ,m} construct vertex aj and connect aj to each okj . For
j ∈ {2, . . . ,m} connect aj to aj−1. As a target vertex, construct r = am+1, and
connect r to am.

Define the configuration C as follows: for i ∈ {1, . . . , n}, let C(x1i ) = C(x2i ) = 2.
For j ∈ {1, . . . ,m}, let C(gj) = 2. Let C(a1) = 1. For all other w ∈ VΦ, C(w) = 0.

4.2. Pebble accumulation bound. The following property of GΦ and C per-
mits reduction beyond Reachable to D2-Reachable via H(GΦ).

Lemma 18. No sequence of pebbling moves in GΦ from C places three or more
pebbles on any vertex in VΦ.
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Proof. Assume such a sequence exists, and let σ be a minimal such sequence.
Since σ is minimal, it cannot perform the same move twice, as this would allow us to
find a subsequence of σ that places four pebbles on that move’s source. (We will use
this fact frequently, often implicitly.) One consequence of this fact is that σ cannot
put three pebbles on r, since r’s only neighbor is am.

Next, note that σ cannot pebble from aj to aj−1 for j ∈ {2, . . . ,m+ 1}. Assume
otherwise. Since σ is acyclic, the result is clear for j = m + 1. Let j be the largest
number in {2, . . . ,m} for which σ pebbles from aj to aj−1. Because σ is acyclic, it
must be that aj receives two pebbles from inside Cj ’s gadget. Even if each v ∈ Oj
receives one pebble from its neighbor in a variable gadget, it becomes apparent upon
inspection that it is not possible to move two pebbles to aj . This is a contradiction,
so σ can’t pebble from aj to aj−1 for j ∈ {2, . . . ,m}.

It follows that for j ∈ {2, . . . ,m}, aj can receive at most one pebble from outside
Cj ’s gadget (from aj−1). Similarly, each v ∈ Oj with j ∈ {1, . . . ,m} can receive only
one pebble from its variable gadget. Inspection of Cj ’s gadget reveals that σ cannot
place three pebbles on any v ∈ Oj ∪ {aj, gj} for j ∈ {1, . . . ,m}.

Similarly, notice that for all j ∈ {1, . . . ,m}, σ cannot pebble from v ∈ Oj to a
vertex w in a variable gadget: even if each other vertex in Oj receives one pebble
from outside Cj’s gadget, and aj also receives a pebble from outside the gadget (if
j ∈ {2, . . . ,m}), inspection once more reveals that σ cannot place two pebbles on v
without pebbling from w to v.

As a result of the previous fact, if σ places three pebbles on a vertex in a variable
gadget, it must do so using only pebbles from that gadget. The structure of the
variable gadgets makes this impossible. It follows, then, that σ cannot place three
pebbles on any vertex in VΦ, a contradiction. It follows that no sequence of pebbling
moves from C places three or more pebbles on any vertex in VΦ.

Corollary 19. No sequence of pebbling moves in GΦ from C uses the same
move twice.

4.3. The main results. Finally we are ready for the main results of the paper.
Theorem 20. Reachability is NP-complete.
Proof. It is clear that Reachability is in NP. To prove that it is NP-hard,

we will show that our construction is a polynomial-time reduction. Suppose that
f : {x1, . . . , xn} → {true, false} is a satisfying truth assignment for Φ. For Φ to be
true, each clause in Φ must also evaluate to true, which in turn implies that one of
the literals in each clause must evaluate to true.

For each variable xi for which f(xi) = false, perform pebbling moves from x1i
and x2i to x̄i. Since f is a satisfying truth assignment, we can choose one wj ∈ Oj
for each j ∈ {1, . . . ,m} that is adjacent to a vertex in a variable gadget that has two
pebbles. Each wj can then receive one pebble from the variable gadget and one from
gj , allowing one pebble to be placed on aj .

Notice that a1 has two pebbles and each aj for j ∈ {2, . . . ,m} has one pebble, so
we can pebble along the path of length m created by the aj ’s to reach am+1 = r.

Conversely, assume there exists a sequence of pebbling moves that places a pebble
on r. Choose such a sequence σ of minimum length. By Lemma 1, σ cannot contain
any cycles.

Note that σ must pebble from aj to aj+1 for each j ∈ {1, . . . ,m}. Assume
otherwise. Clearly σ must pebble from am to r = am+1. Let j be the largest number
in {2, . . . ,m} such that σ does not pebble from aj−1 to aj . Since σ pebbles from aj
to aj+1, and is acyclic, aj must receive two pebbles from a vertex in Oj . But as was
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argued in the proof of Lemma 18, this is impossible given the structure of the gadgets.
Since σ is acyclic, Corollary 19 also implies that, for j ∈ {1, . . . ,m}, aj receives

one pebble from a vertex in Oj . By the way these gadgets were constructed this can
occur only if σ pebbles from a variable gadget to each clause gadget. Notice that
σ cannot move a pebble from both x̄i and either of x1i or x2i . Construct a truth
assignment f as follows: if σ pebbles from x̄i to a vertex in a clause gadget, then
f(xi) = false. For each other variable xi, set f(xi) to true. Since each clause gadget
receives a pebble from a variable gadget, the corresponding clause is satisfied, so f is
a satisfying truth assignment. Therefore, there exists a satisfying truth assignment
for Φ if and only if it is possible to pebble to r in GΦ from C.

Note that |VΦ| ≤ 5m + 3n + 1, and since the degree of every vertex is no more
than 5, |EΦ| ≤ 5

2 |VΦ|, so the size of GΦ is clearly linear in the size of Φ. Also, for all
v ∈ VΦ, C(v) ≤ 2, so the number of pebbles is linear in the size of GΦ, and therefore
the size of Φ. Thus it is clear that our reduction can be constructed in polynomial
time in the size of Φ.

Theorem 21. D2-Reachable is NP-complete.
Proof. Since D2-Reachable is a special case of Reachable, which is in NP,

D2-Reachable is also in NP.
Given an instance of R3-SAT Φ, consider H(GΦ). Recall that, by Lemma 4,

H(GΦ) has diameter two. We saw in the proof of Theorem 20 that r is reachable in
GΦ from C if and only if Φ was satisfiable. Lemmas 18 and 5 together imply that r
is reachable from C in GΦ if and only if r is reachable from C′ in H(GΦ). It follows
that Φ is satisfiable if and only if r is reachable from C′ in H(GΦ).

All that remains to be shown is that H(GΦ) and C
′ can be constructed in poly-

nomial time in the size of Φ. Our proof of Theorem 20 included the fact that the
reduction from Φ to GΦ and C can be constructed in polynomial time. The number
of vertices in H(GΦ) is O(|VΦ|2), and the number of edges is at most the square of the
number of vertices, so the size of H(GΦ) is polynomial in the size of Φ. Since C′ has
only the pebbles from C, it is clear that the reduction can be computed in polynomial
time.

5. Conclusion. This paper provides a somewhat counterintuitive result: al-
though Pebbling-Number goes from being Πp2-complete in general to being P for
diameter two graphs, Reachable is NP-complete regardless of the diameter of a
graph (except for diameter one, of course). Since, at least on the surface, computing
pebbling number requires determining solvability, this seems rather odd. Of course
determining the pebbling number really requires only determining the solvability of
configurations of specific sizes, and this apparently makes a big difference in this case.
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