
Hope College Hope College 

Hope College Digital Commons Hope College Digital Commons 

21st Annual Celebration of Undergraduate 
Research and Creative Activity (2022) 

The A. Paul and Carol C. Schaap Celebration of 
Undergraduate Research and Creative Activity 

4-22-2022 

Algoraph but in C++ Algoraph but in C++ 

Adam James Czeranko 
Hope College 

Andres Louis Solorzano 
Hope College 

Follow this and additional works at: https://digitalcommons.hope.edu/curca_21 

 Part of the Computer Sciences Commons 

Recommended Citation Recommended Citation 
Repository citation:Repository citation: Czeranko, Adam James and Solorzano, Andres Louis, "Algoraph but in C++" (2022). 
21st Annual Celebration of Undergraduate Research and Creative Activity (2022). Paper 31. 
https://digitalcommons.hope.edu/curca_21/31 
April 22, 2022. Copyright © 2022 Hope College, Holland, Michigan. 

This Poster is brought to you for free and open access by the The A. Paul and Carol C. Schaap Celebration of 
Undergraduate Research and Creative Activity at Hope College Digital Commons. It has been accepted for inclusion 
in 21st Annual Celebration of Undergraduate Research and Creative Activity (2022) by an authorized administrator 
of Hope College Digital Commons. For more information, please contact digitalcommons@hope.edu, 
barneycj@hope.edu. 

https://digitalcommons.hope.edu/
https://digitalcommons.hope.edu/curca_21
https://digitalcommons.hope.edu/curca_21
https://digitalcommons.hope.edu/curcp
https://digitalcommons.hope.edu/curcp
https://digitalcommons.hope.edu/curca_21?utm_source=digitalcommons.hope.edu%2Fcurca_21%2F31&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.hope.edu%2Fcurca_21%2F31&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@hope.edu,%20barneycj@hope.edu
mailto:digitalcommons@hope.edu,%20barneycj@hope.edu


Algoraph But In C/C++ 
Andres Louis Solorzano, Adam James Czeranko, and Dr. Charles A. Cusack (Advisor)

Java vs. C/C++ Implementation

Algorithms

• In graph pebbling, each vertex is assigned a 
non-negative integer which represents the 
number of pebbles on that vertex. 

• During a pebbling move, 2 pebbles are 
removed from a source vertex and 1 pebble is 
added to an adjacent vertex.

• A vertex is reachable if there is a sequence of 
pebbling moves that places 1 pebble on the 
vertex.

• Given a configuration, a graph is solvable if 
every vertex is reachable.

• The pebbling number of a graph 𝐺𝐺 is the 
smallest integer 𝜋𝜋(𝐺𝐺), such that any 
configuration that uses 𝜋𝜋 𝐺𝐺 pebbles is 
solvable.

• A graph satisfies the two-pebbling property if 
for any configuration of more than 2𝜋𝜋 𝐺𝐺 − 𝑞𝑞
pebbles, where 𝑞𝑞 is the number of vertices in 𝐺𝐺
with at least one pebble, two pebbles can be 
moved to any vertex.

For more information contact:
Dr. Charles A. Cusack

cusack@hope.edu
(616) 395-7271

Graphs
A graph (not to be confused with giraffes) is a set of 
vertices and set of edges connecting said 
vertices. 

Diameter: The shortest greatest distance 
between any pair of vertices
Note that graphs with diam ≤ 2 are not Lemke graphs

Lemke Graphs
• Lemke graphs are graphs that do not satisfy the two-pebbling 

property. 

AcknowledgementsParallelization

Pebbling
• For this project, our goal was to reimplement the Java Algoraph

algorithms into C/C++ and improve efficiency.

Cycle: A non-repeated sequence of 
connected vertices where the first vertex is 
also the last vertex
Note that acyclic graphs are not Lemke graphs Cyclic Graph Acyclic Graph

Edge Vertex

Graph with Diameter 2

• Hope College Computer Science Department
• Our awesome mentor, Charles A. Cusack
• All the previous faculty and students who worked on Algoraph

A legal pebbling move

1

2

0

0

0

0

1

0

0

1

0

0

Number of Lemke Graphs for:
Less than 8 Vertices: 0 8 Vertices: 22
9 Vertices: 306 10 Vertices: ≥5957

The original Lemke graph, the two other Lemke graphs with minimum number 
of edges, and the Lemke graph with maximum number of edges on 8 vertices.

Programming Language Serial Time 
(sec) (1 core)

Parallel Time (sec) (24 cores)

1 Java 20850.19 Wall Clock Time: 1976.33
CPU Time: 24067.2

2 C/C++ 18592.16 Wall Clock Time: 1526.16
CPU Time: 21083.68

Notice how the C/C++ version is ~20% faster than the Java Version 
in parallel and ~10% in serial

Differences In Implementation: 
• The C/C++ version features just the algorithms to calculate Pebbling Number 

and Two-Pebbling Property whereas the Java version algorithms are 
implemented in the game framework which adds complexity to the code.

• Being that the code was written in C/C++, the new implementation required 
explicit manual memory management to ensure no memory leaks and no 
excess use of memory. In Java, these issues are handled automatically.

• Refactored the data structures in the C/C++ version to optimize algorithms to 
avoid recalculations.

• For parallelization, we used OpenMP for C/C++ and used the prebuilt 
concurrent package in java.util. for Java.

• In general, the compilation/interpretation of the code differ: Java is compiled 
to Java Bytecode and then is executed through the Java Virtual Machine on 
the computer whereas C/C++ is compiled to machine code and runs on the 
computer directly.

Parallelization is the process of adapting a 
program to run in parallel instead of serial 
(multiple cores vs single core).

OpenMP follows the fork-join framework; the program begins within a single “master” thread that 
then creates more threads to be executed on separate cores. 

Parallelization should not modify any functionality of the program; whether or not the red “#pragma 
omp” lines were included in the code to the left, the program still functions as intended.

Thread 1

Thread 2

Thread 3

Thread 4

Diagram of Fork-Join Parallelization Model

Master Thread

• IsSolvableDistance

Main Pebbling Algorithms:

• For every vertex v with ≥2k pebbles, mark every vertex of 
distance k or less from v as reachable. If all vertices are 
marked reachable, then the configuration is clearly 
solvable. Otherwise the solvability remains unknown.

• IsSolvableShortestPath
• Uses the Floyd–Warshall shortest-path algorithm and 

makes all possible moves along the shortest-path tree 
toward the desired root. 

• IsSolvableShortestPebblePath
• Almost identical to the previous algorithm except that the 

distance from the root to a given node is the number of 
edges minus the number of vertices with pebbles on them.

• IsUnsolvableWeightFunction
• Uses a weight function to determine if a configuration is 

unsolvable. Otherwise it is unknown.

The Heuristics:

• Merge Pebbles
• Maintains a list of legal merged pebbles for each vertex

and has two phases— the distribute phase where the initial 
pebble configuration distributes pebbles, followed by the 
merge phase where possible pebbling moves are made. 

• Pebbling Number
• Uses a backtracking algorithm to construct the unsolvable 

configurations on G with the maximum number of 
pebbles, backtracking when a solvable configuration is 
found. The algorithm adds pebbles to a configuration until 
it is solvable, at which point it removes the last pebble and 
places it on the next vertex and continues. 

• “Extends” the graph by adding a new vertex to each 
preexisting vertex with one edge between the two. Notice 
that if the extension nodes are reachable, this means that 
one is able to reach the original node with two pebbles. 
Thus, we can use our solvability algorithm to determine 
the Two-Pebbling Property after extending a graph.

• Two-Pebbling Property

Extending A Graph

* Time for running graphs of 8 vertices 

1

2

0

0

0

1
Solvable Configuration

1

2

0

0

0

0
Unsolvable Configuration


	Algoraph but in C++
	Recommended Citation

	Slide Number 1

