
Hope College
Hope College Digital Commons
18th Annual Celebration of Undergraduate
Research and Creative Activity (2019)

Celebration of Undergraduate Research and
Creative Activity

4-12-2019

Graphics Processing Units (GPUs) and CUDA
Josiah Brett
Hope College

Josiah Brouwer
Hope College

Follow this and additional works at: https://digitalcommons.hope.edu/curca_18

Part of the Systems Architecture Commons

This Poster is brought to you for free and open access by the Celebration of Undergraduate Research and Creative Activity at Hope College Digital
Commons. It has been accepted for inclusion in 18th Annual Celebration of Undergraduate Research and Creative Activity (2019) by an authorized
administrator of Hope College Digital Commons. For more information, please contact digitalcommons@hope.edu.

Recommended Citation
Repository citation: Brett, Josiah and Brouwer, Josiah, "Graphics Processing Units (GPUs) and CUDA" (2019). 18th Annual
Celebration of Undergraduate Research and Creative Activity (2019). Paper 29.
https://digitalcommons.hope.edu/curca_18/29
April 12, 2019. Copyright © 2019 Hope College, Holland, Michigan.

https://digitalcommons.hope.edu?utm_source=digitalcommons.hope.edu%2Fcurca_18%2F29&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.hope.edu/curca_18?utm_source=digitalcommons.hope.edu%2Fcurca_18%2F29&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.hope.edu/curca_18?utm_source=digitalcommons.hope.edu%2Fcurca_18%2F29&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.hope.edu/curcp?utm_source=digitalcommons.hope.edu%2Fcurca_18%2F29&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.hope.edu/curcp?utm_source=digitalcommons.hope.edu%2Fcurca_18%2F29&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.hope.edu/curca_18?utm_source=digitalcommons.hope.edu%2Fcurca_18%2F29&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/144?utm_source=digitalcommons.hope.edu%2Fcurca_18%2F29&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@hope.edu


Abstract

Computers almost always contain one or more 
central processing units (CPU), each of which 
processes information sequentially. While 
having multiple CPUs allow a computer to run 
several tasks in parallel, many computers also 
have a graphics processing unit (GPU) which 
contains hundreds to thousands of cores that 
allow it to execute many computations in 
parallel. In order to complete a larger task, 
GPUs run many subtasks concurrently. Each 
core performs the same instruction on different 
sets of data, making it useful for performing 
tasks such as calculating what each individual 
pixel displays on a screen. The purpose of this 
research was to learn how GPUs work, how to 
write CUDA programs to utilize GPUs, and to 
determine if GPUs could be used to increase the 
speed of algorithms used to determine the 
pebbling properties of graphs. In addition, we 
developed a class module on GPU computing 
with CUDA for the Advanced Algorithms class in 
Hope College’s Computer Science department.

Graphics Processing Units (GPUs) and CUDA
Josiah Brett, Josiah Brouwer, Dr. Charles Cusack (Advisor)

Department of Computer Science, Hope College

CPUs vs. GPUs

CPU GPU

Images adapted from https://blogs.nvidia.com/blog/2009/12/16/whats-the-difference-between-a-cpu-and-a-gpu/

contain one to tens of 
cores

contain hundreds to 
thousands of cores

low memory transfer 
overhead

high memory transfer 
overhead

cores can work 
independently

cores perform same 
functions on different 

data

Threads, Blocks, and Grids

Warps

Threads within a block are grouped into sets of 32 threads, called 
warps. Threads within a warp run in lock-step and make synchronized 
memory accesses. If threads within a warp need to complete 
different tasks, the warp completes each type of task sequentially. 
Every thread in a warp that is not completing the type of task that is 
being completed must wait, creating inefficiency. This is called warp 
divergence. Conditional statements are one way that different 
threads in a warp can be made to complete different tasks.

Conclusions

It was decided that using GPUs to run graph pebbling 
algorithms would not result in a worthwhile increase in 
speed. We came to this conclusion because different 
threads would be running tasks on different vertices, 
which would make the tasks slightly different. Because 
threads within the same warp would be completing 
different tasks, there would likely be a large amount of 
warp divergence, significantly harming efficiency.

Memory

The GPU’s memory is independent of the CPU’s. In algorithms that 
use a GPU, data must be transferred from the CPU to the GPU before 
the GPU can perform computations using it. Afterwards, the result 
data must be transferred to the CPU. Because of the relatively large 
amount of time it takes to transfer data, the increase in speed from 
the GPU’s parallel computations must compensate for the time it 
takes for memory to be transferred if the GPU is to be worth using.

CUDA C

CUDA C is a platform and programming model for writing code that 
uses GPUs. Other options for GPU programming exist, which use 
various languages and types of GPUs.

Kernels

Kernels are functions that are executed on the GPU. 
When a kernel is launched, the number of blocks per 
thread and the number of blocks are specified. Thread 
and block index can be determined from within a kernel, 
allowing different threads to do slightly different tasks 
despite executing the same function. It is worth noting 
that kernels can be called from within other kernels.

By NVIDIA - NVIDIA CUDA Programming 

Guide version 3.0, CC BY 3.0, 

https://commons.wikimedia.org/w/index.php?

curid=17625645

Edge DetectionOriginal Oil Paint

Dither Blur Greyscale

A thread is the smallest unit of execution on a 
GPU, and executes a single process. Many 
threads can be run concurrently. Threads are 
organized into blocks, which are, in turn, 
organized into a grid. Blocks and threads are 
organized using three-dimensional indexing

__global__ void add(int *a, int *b, int *c, int numElements){

int idx = blockIdx.x * blockDim.x + threadIdx.x;

if(idx < numElements){

c[idx] = a[idx] + b[idx];

}

}


	Hope College
	Hope College Digital Commons
	4-12-2019

	Graphics Processing Units (GPUs) and CUDA
	Josiah Brett
	Josiah Brouwer
	Recommended Citation


	PowerPoint Presentation

