#### Hope College Digital Commons @ Hope College

| 14th Annual Celebration for Undergraduate | Celebration for Undergraduate Research and |
|-------------------------------------------|--------------------------------------------|
| Research and Creative Performance (2015)  | Creative Performance                       |

4-10-2015

### Mission Monteverde: Mathematical Rainforest Modeling

Benjamin Johnson

Grace Wiesner

Follow this and additional works at: http://digitalcommons.hope.edu/curcp\_14

#### **Recommended** Citation

**Repository citation:** Johnson, Benjamin and Wiesner, Grace, "Mission Monteverde: Mathematical Rainforest Modeling" (2015). 14th Annual Celebration for Undergraduate Research and Creative Performance (2015). Paper 21. http://digitalcommons.hope.edu/curcp\_14/21 April 10, 2015. Copyright © 2015 Hope College, Holland, Michigan.

This Poster is brought to you for free and open access by the Celebration for Undergraduate Research and Creative Performance at Digital Commons @ Hope College. It has been accepted for inclusion in 14th Annual Celebration for Undergraduate Research and Creative Performance (2015) by an authorized administrator of Digital Commons @ Hope College. For more information, please contact digitalcommons@hope.edu.

# Mission Monteverde: Mathematical Rainforest Modeling



Abstract: The tropical rainforest is one of earth's most diverse and dynamic ecosystems. Tree or branch falls in the forest can open gaps in the canopy, allowing light to reach the forest floor. Pioneer plants are adapted to take advantage of these conditions, sometimes emerging many years after being deposited as seeds. Light conditions change as the gap closes, impacting rates of growth and reproduction.

For the past 30 years, sizes and reproductive outputs of individuals of 6 pioneer plant species have been measured along 5 transects in the Monteverde Cloud Forest Preserve in Monteverde, Costa Rica. Each 500 m transect was chosen to be representative of different conditions in some part of the cloud forest

To model the pioneer plant demographics, we classified canopy gaps by age and size and developed a matrix population model that accounts for the differing gap environments. We also created a stochastic matrix model of gap formation and evolution to simulate the dynamics of rainforest canopy gaps. Combined, these models will allow us to simulate pioneer plant population dynamics in the changing forest environment, and to explore how reproduction and growth rate parameters, such as seed predation rates, impact pioneer population dynamics.



a) Clouds rolling through the canopy of the cloud forest. b) Pioneer plant species Cecropia polyphlebia. c) A canopy gap lets increased amounts of light into the forest floor. d) Pioneer plant species Urera elata.

**Introduction:** In the 1950's Quakers looking to flee the Korean War draft settled in Monteverde, Costa Rica. They established simple lives, centered around cheese and dairy production. Recognizing the land above them as a valuable water source, they did their best to protect it. Twenty years later through the efforts of The Tropical Science Center and visiting scientists land was purchased and the Monteverde Cloud Forest Preserve was founded.

Our data is from five 500 meter long transects of land that represent the variety of terrains and environments in the preserve. The six focal plant species, Urera elata, Witheringia meanthia, Phytolacca rivinoides, Cecropia polyphlebia, Bocconia fructescens, and Guettarda poasana are representative of the diverse nature of the pioneer plant species found in Monteverde. Plants that land within two meters of either side of the transect are accounted for in the data and their height, diameter at breast height (DBH), density of the canopy above the plant and seed production (if appropriate). Gaps near enough to the transect to affect light conditions of the plants on the transect were measured and the area of the gaps was calculated for later classification



Plant Classification Scheme: To organize plant data, species were classified into size classes based on the height of the plant. The figure to the left is a simplified life cycle diagram for the plant Urera elata, displaying some possible transitions from size class to size class.

Dr. Greg Murray, Dr. Brian Yurk, Ben Johnson, Grace Wiesner Biology & Mathematics Departments, Hope College

**Gap Classification Scheme:** Canopy gaps are classified into 9 stage classes based on the size and age of the gap (see figure 1). Each 500m transects is divided into 5,000 1/10m intervals. Each interval is classified in a stage class based on the stage class of the gap that overlaps the interval. Gaps take multiple years to regrow into mature forest, hence an interval may be in one stage class for multiple time steps.

**Stage Clas** 9 (mature for

Time t+1:**1119999999555555999966666666666666** Figure 2: Example of a theoretical gap classification for a 5m long

Within the model, each interval is projected forward from its initial gap into its appropriate size class during its building phase years. The 5,000 intervals are combined into a matrix where the rows are the years from 1983-present and the columns represent the 5,000 intervals on the transect. For instance, figure 2 is an example of a 5 meter long transect and represents how gap classification sizes can change between two years.



Transition Probability Matrix: After organizing the data, R code was written to extract transitional probability matrices (where each entry displays the probability that something in class x at time t will end up in class y at time t+1). The transitional probability matrix is multiplied by the column vectors holding the population at time t to project the population at time t+1.

| <b>Transition Probability Matrices:</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | r 11             | [ 0]                               | [ 0]        | F 47       |                   |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|------------------------------------|-------------|------------|-------------------|
| Figure 3 is the transition probability                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                  | [,2]                               | [,3]        | [,4]       | [,5]<br>10407 540 |
| matrix for <i>Urera elata</i> calculated from $\begin{bmatrix} 1 \\ 2 \end{bmatrix}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                  | 0.000                              | 0.000       | 0.000      | 0.000             |
| all of the present <i>Urera</i> transitions in $[2,]$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | NaN              | 0.307                              | 0.077       | 0.000      | 0.000             |
| the data set. The zero probabilities in [4]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | NaN              | 0.252                              | 0.000       | 0.070      | 0.188             |
| the data set. The zero probabilities in $[\neg,]$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | NaN              | 0.004                              | 0.005       | 0.007      | 0.758             |
| row one (blue entries) are due to the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                  |                                    | 1 1 1       | 0.072      | 0.700             |
| fact that only mature plants are able to Fig                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | gure 3:          | Transition                         | probability | matrix for | : Urera elata.    |
| produce seeds, so no transitions are                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                  |                                    |             |            |                   |
| present there. The red entry $(1, 5)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Fi               | gure 4 is                          | s the ov    | erall tra  | ansition          |
| holds the average number of seeds                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | m                | atrix tha                          | t repres    | sents the  | e changing        |
| one mature <i>Urera</i> will produce per                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ra               | inforest                           | gap str     | uctures.   | Based on          |
| season. Note the general linear trend                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 01               | ir initial                         | classifi    | cation,    | there are         |
| of small size classes to larger size                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | SO               | me exp                             | ected pa    | atterns (  | noted in          |
| classes The NaNs in column one are                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | re               | red) in the matrix such as a high  |             |            |                   |
| due to a look of configuration of the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | nr               | nrobability of transitions from an |             |            |                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                  | probability of transmons from gap  |             |            |                   |
| seed data.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                  |                                    | 0, 2, 0     | 00, 5 1    | ) / and 4 to      |
| [,1] [,2] [,3] [,4] ,5] [,6] [,7] [,8] [,9]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 8,               | along w                            | vith a la   | rge por    | tion of           |
| 1, ] 0.009 0.013 0.006 0.008 0.017 0.008 0.003 0.002 0.010 0.017 0.008 0.003 0.002 0.017 0.018 0.018 0.013 0.010 0.017 0.018 0.018 0.013 0.010 0.017 0.017 0.018 0.018 0.013 0.010 0.017 0.017 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 | $\int_{3} m$     | ature for                          | est 9 re    | emainin    | g as 9.           |
| 3,1 0.000 0.012 0.002 0.000 0.017 0.009 0.011 0.008 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $\frac{3}{4}$ Tl | nere are                           | also hig    | gh prob    | abilities         |
| 4,] 0.012 0.013 0.008 0.000 0.014 0.011 0.015 0.005 0.010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | o (n             | oted in l                          | olue) th    | at gap 6   | 5 will remain     |
| 5,] 0.979 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 06,              | 7 remai                            | n 7 and     | 8 rema     | in 8 due to       |
| 6,] 0.000 0.931 0.000 0.000 0.035 0.738 0.000 0.000 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <sup>0</sup> th  | ose stru                           | ctures r    | emainir    | ng in their       |
| /,] 0.000 0.000 <b>0.958</b> 0.000 0.02/ 0.014 <b>0.894</b> 0.000 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $\frac{0}{2}$    | assificat                          | ion for     | multinl    | e vears           |
| 9.1 0.000 0.000 0.000 0.772 0.040 0.007 0.003 0.750 0.000<br>9.1 0.000 0.000 0.000 0.000 <b>0.840</b> 0.195 0.062 0.026 <b>0.95</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $3 h_{c}$        | fore ret                           | irning t    | n matur    | re forest         |
| <b>Figure 4:</b> Transition probability matrix for gap structures.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                  |                                    | arning (    | o matu     | 101051.           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                  |                                    |             |            |                   |



| 55   | Size (m²) | Age (yr) |  |
|------|-----------|----------|--|
|      | <5        | ≤ 1      |  |
|      | 5 - <20   | ≤ 1      |  |
|      | 20 - <80  | ≤ 1      |  |
|      | ≥ 80      | ≤ 1      |  |
|      | <5        | >1 - <2  |  |
|      | 5 - <20   | >1 - <5  |  |
|      | 20 - <80  | >1 - <10 |  |
|      | ≥ 80      | >1 - <15 |  |
| est) |           |          |  |

Figure 1: Gap classification scheme as determined by gap size and

Snapshot of the forest in 2013: This figure represents the gap data for all 5 transects in 2013. Each color represents a different gap classification (1-9) with 9 signifying mature forest. This figure specifically indicates the variety of gap sizes that are present as the transects











## HHMI HOWARD HUGHES MEDICAL INSTITUTE