The Validity of VO2max Testing Modalities in Running, Cycling and Swimming Populations

Dana Almarez
Michael Fries
Kaylee Kiogima

Follow this and additional works at: http://digitalcommons.hope.edu/curcp_13

Recommended Citation
http://digitalcommons.hope.edu/curcp_13/114
Abstract

While it is generally accepted that the treadmill and cycle ergometer are equally valid modalities of testing maximal oxygen uptake (VO2max) in athletes, the reasoning behind this assumption is largely unknown. Numerous studies have shown significant differences in VO2max between various athletic populations due to the demands of their sport and training habits. As a result of these variances, the question has been raised as to how valid testing results are for different modalities in various athletic populations. Therefore, the purpose of the research project will be to determine the validity of two VO2max testing modalities (treadmill and cycle ergometer) in swimming, running, and cycling populations. The main question this project aims to answer is which modality will provide a better measure of VO2max for swimmers based on the differences between a whole body workout (treadmill) and a region specific workout (cycling). Fifteen healthy, untrained, college aged participants with experience in running, cycling or swimming took part in the study. Participants were randomized and completed two VO2max tests (treadmill and cycle ergometer) on separate occasions. Results from individual participants testing will be analyzed to determine differences between modalities. Participants will be grouped by history of running, cycling or swimming and then results will be analyzed to determine significant differences between groups. Results from testing are forthcoming.

Introduction

While cycle ergometer and treadmill testing are widely utilized and are generally accepted as valid means of measuring VO2max it remains unknown which modality is better suited for different populations of athletes such as runners, cyclists, and swimmers. VO2max is the ability of the working tissues in the body to utilize oxygen during maximal exercise for energy production. While it is reasonable to infer that runners will be more proficient on the treadmill and cyclists on the cycle ergometer, it is unclear which modality is better suited for athletes such as swimmers when the option of swim testing is unavailable; as is often the case. Previous studies, such as that of Sousa et al. (5) and Roels et al (6), have used specialized equipment for testing swimmers that is not widely available and therefore has limited application.

The studies of Schember et al (3) and Spackman et al (4) have displayed that large differences in recording VO2max can also be caused by differences in procedures and protocols.

As a result of these studies we hypothesize that swimmers will produce more accurate measurements of VO2max on the treadmill due to the whole-body nature of swimming compared to cycling and running.

Purpose

The purpose of this study is to determine which modality of exercise, running or cycling, would be the best predictor of VO2max for running, cycling, and swimming populations.

Methods

Subject Selection: 15 male participants (18-22 yrs.) were recruited from Hope College Health Dynamics classes through email or in person. Participants were placed into either runner, biker, or swimmer groups based on the results of a questionnaire that examined previous athletic experience and preferred modality of exercise.

Experimental Tests:
Cycle Ergometer VO2max test

Treadmill VO2max test

Experimental Design:
The participants reported to the lab on a total of three occasions. The first time was for a familiarization trial which allowed them to become familiar with the testing equipment and maximal test procedures. Participants returned on two separate occasions to perform maximal testing. Each participant performed one test on the cycle ergometer and one on the treadmill. The order of the testing was randomized for each participant. Participants were instructed to refrain from strenuous exercise 24 hours prior to testing and eat a light carbohydrate meal at the experimental tests.

Procedure:
Cycle:
- Start at resistance of 50 Watts at a speed of 80-100 RPMs
- Once participant reaches fatigue, HR within 5 BPM of max, or RER exceeds 1.1 the test is terminated
- A five minute cool down period at a resistance of 50 Watts at a comfortable speed

Treadmill:
- Start at a comfortable jogging speed for two minutes
- Test starts at 100 Watts at a speed of 80-100 RPMs
- Resistance increases every two minutes by 25 Watts
- Once participant reaches fatigue, HR within 5 BPM of max, or RER exceeds 1.1 the test is terminated
- A five minute cool down period at a walking speed

Experimental Tests:
Cycle Ergometer VO2max test

Treadmill VO2max test

Experimental Design:
The participants reported to the lab on a total of three occasions. The first time was for a familiarization trial which allowed them to become familiar with the testing equipment and maximal test procedures. Participants returned on two separate occasions to perform maximal testing. Each participant performed one test on the cycle ergometer and one on the treadmill. The order of the testing was randomized for each participant. Participants were instructed to refrain from strenuous exercise 24 hours prior to testing and eat a light carbohydrate meal at least 3 hours prior to testing. Following the completion of all testing, mean scores from each group of VO2max tests were compared using a 2x3 (time x group) repeated measures ANOVA. Differences between predicted and actual means within individual groups and modalities were compared using paired t-tests.

Results

Table 1. Study Design. Participants performed this sequence one time over the course of four weeks

<table>
<thead>
<tr>
<th>Procedure</th>
<th>Familiarization Trial</th>
<th>First Test</th>
<th>10 Day Break</th>
<th>Second Test</th>
</tr>
</thead>
</table>
| Cycle | Start at resistance of 50 Watts at a speed of 80-100 RPMs for two minutes | - Test starts at 100 Watts at a speed of 80-100 RPMs
- Resistance increases every two minutes by 25 Watts
- Once participant reaches fatigue, HR within 5 BPM of max, or RER exceeds 1.1 the test is terminated
- A five minute cool down period at a resistance of 50 Watts at a comfortable speed |
| Treadmill | Start at a comfortable jogging speed for two minutes | - Test starts and speed increases by 1 MPH every two minutes
- Once max speed is reached, grade increased by 1% every two minutes
- Once participant reaches fatigue, HR within 5 BPM of max, or RER exceeds 1.1 the test is terminated
- A five minute cool down period at a walking speed |

Conclusions

• There is a significant difference between the two testing modalities (Fig. 2) but not between the three testing groups. This suggests that treadmill testing elicits a more accurate VO2max due to the fact that it is a full body, weight bearing exercise.
• Swimmers had a significantly different VO2max response on the treadmill than on the cycle ergometer. This supports our hypothesis, suggesting that swimmers will produce more accurate test data on the treadmill (Fig. 2).
• There was a significant difference between the values produced by the prediction equations and the recorded results for treadmill testing, but not on the cycle ergometer.
• It can be concluded that the prediction equation for the cycle ergometer is more accurate than the equation for the treadmill. Therefore, using the treadmill prediction equation to estimate a participant’s running VO2max may not reliable enough to be used alone.
• There is a significant difference between the VO2max values yielded from the cycle ergometer and the treadmill testing (Fig. 2). We can conclude that the treadmill test provides a more accurate representation of a participant’s VO2max regardless of their athletic history. In conclusion, based on our results and analysis we can accept our original hypothesis and conclude that swimmers produced a greater VO2max when using the treadmill test.

Limitations

• Little background on comparing modalities of testing VO2max
• Measurement error
• Equipment failure
• Scheduling 2 participants back to back days instead of typical 10 day protocol
• Convenience sampling of active, but untrained subjects; trained athletes would have been preferred

Bibliography